Operating System

Main Memory

Di Zhang
School of Software Engineering

WL

Course Review

What are the four requirements for Deadlock?

 Mutual exclusion
* Only one process at a tfime can use a resource.

* Hold and wait

* Process is holding at least one resource and is waiting to acquire additional resources
held by other processes
* No preemption
 Resources are released only voluntarily by the process holding the resource, after
process is finished with it
* Circular wait

* There exists a set {T;, ..., T,} of waiting processes
« T;is waiting for a resource that is held by T,
« T, is waiting for a resource that is held by T;

« T,is waiting for a resource that is held by T;

» Ignore the problem and pretend that deadlocks never
occur in the system

 Used by most operating systems, including UNIX and Windows

 Ensure that the system will never enter a deadlock state
» deadlock prevention
* deadlock avoidance

* Allow the system to enter a deadlock state and then
recover
* deadlock detection
« deadlock recovery

How the Banker's algorithm works? (safty

1. Let Work and Finish be vectors of length m and n, respectively. Initialize:
(a) Work = Available
(b) Finish [i] = false fori=0,1, ..., n-1.
2. Find an i such that both:
(a) Finish [i] = false
(b) Need; < Work
If no such iexists, go to step 4.

3. Work = Work + Allocation
Finish[i] = true
go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe state.

How the Banker's algorithm works? (req

 Request; = request vector for process P;.

« If Request;[j] = k then process P; wants k instances of resource
Type R;.
1. If Request; < Need; go to step 2. Otherwise, raise error condition,
since process has exceeded its maximum claim.

2. If Request; < Available, go to step 3. Otherwise P, must wait, since
resources are not available.

3. Pretend to allocate requested resources to P; by modifying the state
as follows:
Available = Available — Request;
Allocation; = Allocation; + Request;;
Need; = Need; — Request;;
. If safe = the resources are allocated to P;.
- If unsafe = P, must wait, and the old resource-allocation state is restored

3

How to detect deadlocks? (detection algorit

« 1. Let Work and Finish be vectors of length m and n, respectively. Initialize:
 (a) Work = Available
« (b)Fori=12, .., n,if Allocation; # 0, then
Finish[i] = false; otherwise, Finish[i] = true.
« 2.Find an index i such that both:
 (a) Finish[i] == false
« (b) Request; < Work
« If no such iexists, go to step 4.
« 3. Work = Work + Allocation;
Finish[i] = true
go to step 2.

« 4 If Finish[i] == false, for some i, 1ci<n, then the system is in deadlock state.
Moreover, if Finish[i] == false, then P; is deadlocked. 7

What to do when detect deadlocks?

« Terminate process, force it to give up resources
* Preempt resources without killing of f process
* Roll back actions of deadlocked processes

* Many operating systems use other options

Main Memory

Outline

* Background
* Contiguous Memory Allocation
* Paging
 Structure of the Page Table
* Segmentation

10

Background

11

Recall

* Program must be brought (from disk) into memory and
placed within a process for it to be run
» All data in memory before and after processing
* All instructions in memory in order to execute

12

Background

Source Object In

code module memory
| 4 4 4 . i .r
compile load Execute

13

Process in Memory

Process >
control En'l'r'y point PCB
information to program—>
Branch
Program instruction
¢
Increasing
address Reference
values to data
v

Current top
of stack —

14

User’s View of a Program

Main
s]gele[gely} | Symbol

Table

Subroutine

Logical
address Sq rt

space

15

Recall

* Program must be brought (from disk) into memory and
placed within a process for it to be run
* All data in memory before and after processing
» All instructions in memory in order to execute

* Main memory and registers are the only storage which
CPU can access directly

16

Computer System Organization

« Computer-system operation

* One or more CPUs, device controllers connect through
common bus providing access to shared memory

» Concurrent execution of CPUs and devices competing for
memory cycles

mouse keyboard printer ~ monitor

idn\

—_—

disk
controller

graphics

B adapter

USB controller

memory

Main memory

18

Main memory

* Address Space:

* All the addresses and state a Operation
process can touch System

* Main memory usually divided
into two partitions:

* Resident operating system, usually
held in low memory User

* User processes then held in high
memory

ObOO000 0000

Processes

ObFFFF FFFF

19

Storage-Device Hierarchy

registers

» |
i 4 ‘

cache
oy

. \
main memory
AN

"
electronic disk
A

:

magnetic disk

A

v
optical disk
A

v

magnetic tapes

20

Memory

1000

=t
o
o

=2
o

Performance

1980
1981

Processor-DRAM Memory Gap (latency)

“Moore's Law"

“Less’ Law?"

y— WProc

CPU

600/0/}/'".
(2X/1.5yr)

Processor-Memory
Performance Gap:
(grows 50% / year)

~— DRAM

1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Time

9%/ yr.
(2X/10 yrs)
228
xRS
- v (\

21

Memory Management

* Memory management activities

» Keeping track of which parts of memory are currently being
used and by whom

* Deciding which processes (or parts thereof) and data to
move into and out of memory

* Allocating and deallocating memory space as needed

22

Two Views of Memory

Source Object In

code module memory

int a; MOV AX, [?] MOV AX, [2]

. =ap INC AX =ap INC AX

a++; MOV [?] ,AX MOV [2] ,AX
compile load Execute
View from the CPU View from memory
(what program sees) (physical memory)

Translation box
(converts between

the two views)

23

Logical vs. Physical Address Space

* Logical address — generated by the CPU
* Physical address — address seen by the memory unit

* Logical and physical addresses are the same in compile-
time and load-time address-binding schemes

» Logical and physical addresses differ in execution-time
address-binding scheme

Address binding scheme: in compile time™

Source Object In
code module memory
iy ff q INC AX q #
at++; MOV [2],AX
compile load Execute

* Address binding of instructions and data to memory
addresses happen at:
* 1. Compile time: If memory location known a priori,

absolute code can be generated; must recompile code if
starting location changes.

25

Address binding scheme: in compile time ™

* Example
int a; MOV AX,[2]
INC AX 5
at+; MOV [2],AX 3
y s 4
5
MOV AX, a Huge . exe 6
INC AX 7
MOV a, AX int A[14]; 8
\ r . 9
\ T

—
nN

Where is a

—
w

—_
(@) I N

26

Address binding scheme: in load time

* Address binding of instructions and data to memory
addresses happen at

» 2. Load time: must generate relocatable code if memory
location is not known at compile time

Source Object In

code module memory

int a; MOV AX, [0] MOV AX, [2]

== INC AX ==§ INC AX >
a++; MOV [0],AX MOV [2],AX

compile load Execute

27

Address binding scheme: in load time

« Example
int a; 0 ™ 2 (1)
2 | a |
at++; 3
0 ™ 11 4
5
MOV AX, a 5
L MOV AX, [2] 7
MOV a, AX INC AX 8
MOV [2],AX 9
10
MOV AX, [0] MOV AX, [11] 11; I a |
INC AX LY 12
MOV [0],AX MOV [11],AX 14
15

Dynamic Relocation

* Address binding of instructions and data to memory
addresses happen at

* 3. Execution time: Binding delayed until run time if the
process can be moved during its execution from one memory
segment to another. Need hardware support for address
maps (e.g., base and limit registers)

Source Object In

code module memory

int a; MOV AX, [0] MOV AX, [2]
—p =) INC AX =) INC AX
at+; MOV [0],AX MOV [2],AX

compile load Execute 2

Memory-Management Unit (MMU)

* Hardware device that maps logical address to physical
address

* In MMU scheme, the value in the relocation register is
added to every address generated by a user process at
the time it is sent fo memory

* The user program deals with logical addresses; it never
sees the real physical addresses

Logical Physical |
Addresses Addresses ‘
MMU

Memory-Management Unit (MMU)

* Dynamic relocation using a relocation register

relocation
register

14000
logical physical

address address
CPU + > memory
346 14346

MMU

31

Memory Management Requirement

* Protection

* Processes should not be able to reference memory locations
in another process without permission

* Sharing
» Allow several processes to access the same portion of
memory

* Better to allow each process access to the same copy of the
program rather than have their own separate copy

Contiguous Memory Allocation

33

Fixed Partition

Partition 4

* One job each partition

* In multiple queues, each process is
assigned to the smallest partition in
which it fits and minimizes the
internal fragmentation problem. Partition 2

Partition 1

Partition 3

400K

ON
200K

100K

34

Fixed Partition

* In single queue, the
process is assighed to the
smallest available partition
and the level of
multiprogramming is
increased.

* Main memory use is
inefficient. Any program,
no matter how small,
occupies an entire
partition.

Single input queue

Partition 3

Partition 2

Partition 1

ON

400K

Dynamically Partition

* Multiple-partition allocation

* Hole - block of available memory; holes of various size are
scattered throughout memory

* When a process arrives, it is allocated memory from a hole
large enough to accommodate it

 Operating system maintains information about:
a) allocated partitions; b) free partitions (hole)

oS (05 OS oS
process 5 process 5 process 5 process 5
process 9 process 9

process 8 l I I process 10
process 2 process 2 process 2 process 2

Dynamic Storage-Allocation Problem

head tail length
head Q 2 512 11 133)
head /& 2 > 11 133)
head /& 2 72 —11 133)
head /L\o 2 7128103 1113
head /& 2

517

Ol [([N|O|OT|BA]JW|IN|FL|O

el
e

) NCO

Process 5

) ® ~

=
N

el i e
ol |w

Process 4
37

Contiguous Memory Allocation

* Relocation registers used to protect user processes
from each other, and from changing operating-system
code and data

* Base register contains value of smallest physical address

* Limit register contains range of logical addresses - each
logical address must be less than the limit register

* MMU maps logical address dynamically

Base and Limit Registers

* A pair of base and limit
registers define the logical
address space

256000

300040

420940

880000

1024000

operating
system
process
300040
process base
120900
limit
process

39

Base and Limit Registers

10 (—h|/® QOO0

Base=5

Limit=7

O/bdh wn—O

11
12
13
14
15

Base and Limit Registers

* Can use base & bounds/limit for dynamic address translation
(Simple form of “"segmentation”):

* This gives program the illusion that it is running on its own
dedicated machine, with memory starting at O

 Program gets continuous region of memory

« Addresses within program do not have to be relocated when program
placed in different region of DRAM

Base
Logical l
Address

CPU DRAM

Physical
Address

Yes: Error!

Dynamic Storage-Allocation Problem

* How to satisfy a request of size n from a list of free
holes
» First-fit: Allocate the first hole that is big enough

- Best-fit: Allocate the smallest hole that is big enough; must
search entire list, unless ordered by size
* Produces the smallest leftover hole

« Worst-fit: Allocate the largest hole; must also search entire list
* Produces the largest leftover hole
* Next-fit: Scans memory from the location of the last placement

* First-fit and best-fit better than worst-fit in terms of speed
and storage utilization

First-fit

0000 0000

New Process

New Process

43

Best-fit

0000 0000

New Process

> 8

-
New Process } 4

44

Worst-fit

0000 0000

New Process

}3

+1
2
. B
New Process
> 8

45

Next-fit

0000 0000

New Process

____NewProcess2 |z /

N
o)
\

> 8

J

f4

+1

46

Exercise

* Given memory partitions, which are 100K, 450K, 250K,
300K and 600K

 There are four processes in order: 212K, 417K, 112K,
and 426K.

* In order to place processes in the memory, there are

three algorithms: the first-fit algorithm, the best-fit
algorithm, and the next-fit algorithm. Of the three
algorithms, which one makes the best use of memory
space?

Fragmentation

Process 1

Process 2

Process 4

Process 5

Process 6

0000 0000

Process 4

Process 2

Process 6

Process 3
Process 7 ? Process 5
N

Fragmentation

* External Fragmentation — total memory space exists
to satisfy a request, but it is not contiguous

» External fragmentation is the phenomenon in which free
storage becomes divided intfo many small pieces over time.

 The term "external" refers to the fact that the unusable
storage is outside the allocated regions.

Fragmentation

* Consider a multiple-partition allocation scheme with a
hole of 18,464 bytes. Suppose that the next process
requested 18,462 bytes. If we allocate exactly the
requested block, we are left with a hole of 2 bytes.

* The overhead to keep track of this hole will be
substantially larger than the hole itself.

Fragmentation

* The general approach to avoiding this problem is to
break the physical memory into fixed-sized blocks and
allocate memory in units based on block size.

« With this approach, the memory allocated to a process
may be slightly larger than the requested memory.

* The difference between these two approaches is
internal fragmentation - memory that is internal to a
partition but is not being used.

Fragmentation

* Reduce external fragmentation by compaction
» Shuffle memory contents to place all free memory together
in one large block
« However, it is somewhat expensive.

« Compaction is possible only if relocation is dynamic, and is
done at execution time

Compaction

Process 2

Process 4

Process 5

Process 6

0000 0000

Process 4

Process 2

Process 6

Process 7
? Process 7
3

Contiguous Memory Allocation

* Base and Limit Pros: Simple, fast

* Fragmentation problem
* Not every process is in the same size
» Over time, memory space becomes fragmented

* Missing support for sparse address space
» Would like to have multiple chunks/program
* E.g.: Code, Data, Stack

* Hard to do inter-process sharing
» Want to share code segments when possible
« Want to share memory between processes

Contiguous Memory Allocation

* Is there a scheme without External Fragmentation?
* Of coursel

55

Paging

56

Paging

Process 2

Piece
Size?

0000 0000
Process 4

Process 5

Process 6

?

Process 4

Process 2

Process 6

Process 5

57

Paging

* Physical address space of a process can be noncontiguous;
process is allocated physical memory whenever the latter
is available

* Divide physical memory into fixed-sized blocks called
frames
» Size is power of 2
» Typically have small pages (1K-16K)

* Divide logical memory into blocks of same size called
pages

How to allocate?

» 32-byte memory and 4-byte pages

a
PageO tc’
d
e
Pagel a
h
!
Page2 i
I
m
Page3 2
—

Logical Memory

Physical Memory

— | =

=Hh O

oMo Nlopla)

o3

Ob 00000 '|
How to allocate? i;
o 0b 001001
« 32-byte memory and 4-byte pages
= Ob 01000 ?
PageO 2
+ Ob 01100 g
Pagel g — g
? p— Ob 10000
Page2 i
' Ob 10100
m
Page3 2 ‘
___p | O Ob 11000 I
o
Logical M Physical M IR - —
ogical Memory ysica emoryOb 11100

Ob 00000

How to allocate? Frame O

%

I
» 32-byte memory and 4-byte pages Frame II_
\ Ob 01000

Frame 2| Page 1

PageO

Ob 01100

2 ["ceeee.., Frmﬁ Page O

Ob 10000
6 Frame 4

Ob 10100
Frame 5

O Ob 11000
Frame 6| Page 3

Pagel

0
1
2 | O
3

Page?2

Page3

Logical Memory Physical Memory

Ob 11100
Frame 7

61

Address Translation Scheme

* Address generated by CPU is divided into:

* Page number (p) — used as an index into a page table which
contains base address of each page in physical memory

» Page offset (d) — combined with base address to define the
physical memory address that is sent to the memory unit

* For given logical address space 2™ and page size 2"

page number | page offset |

I
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 I
\ 1

-
’
1
1
1
1
1
1
1

Ob OOOOOI

How to allocate? P —
0b Q0100
» 32-byte memory and 4-byte pages ...
-) .+ 0b01000f ¢
Page0 IZ é
d 3 Ob 01100 a
e 4 b
Pagel ; 2 -
—— é 0 | 3 Ob 10000
Page? ﬁ
10 L e Ob 10100
m 12 2 O
Page3 A %2
D 15 3 | 6 Ob 11000 [~

Logical Memory Physical Memory Ob 11100 —

63

Paging Hardware

Logical Physical
Address Address

EawE

Page Table

Memory

64

Paging

* Keep track of all free frames

* To run a program of size n pages, need to find n free
frames and load program

* Set up a page table to translate logical to physical
addresses

* No external fragmentation
* May has internal fragmentation

Free Frames Frame O

Frame 1
PageO 0 3
1 2 Frame 2| Page 1
Pagel 2 0
3 6 Frame 3| PageO
Page?2 Page
Table Frame 4
Page3
Frame 5
Logical
Memory

Frame 6| Page 3

3 H2 HO0HO6 H 7 Physical
Frame 7 Memory

66

Implementation of Page Table

* The page table is contiguous in main memory

* Page-table base register (PTBR) points to the page
table

* Page-table length register (PRLR) indicates size of the
page table

Implementation of Page Table

* In this scheme every data/instruction access requires
two memory accesses.
* One for the page table, and
* One for the data/instruction.

* The two memory access problem can be solved by the
use of a special fast-lookup hardware cache called

associative memory or translation look-aside buffers
(TLBs)

68

Paging Hardware With TLB

TLB
miss

Logical
Address

R

TLB

©

{

>

Page Table

L

physical

Address

Memory

69

Paging Hardware With TLB

* If the page number is not in the TLB (known as a TLB
miss), a memory reference to the page table must be
made. When the frame number is obtained, we can use
It fo access memory.

* In addition, we add the page number and frame number
to the TLB, so that they will be found quickly on the
next reference.

 If the TLB is already full of entries, the operating
system must select one for replacement.

Paging Hardware With TLB

Logical

Address Physical

Address

71

Why Does TLB Help? Locality!

Probability
of reference

0 2"-1
Address Space

72

Effective Access Time

» Associative Lookup = ¢ time unit
* Assume memory cycle time is 1 time unit

* Hit ratio — percentage of times that a page number is
found in the associative registers; ratio related to
number of associative registers

* Hit ratio = a
* Effective Access Time (EAT)
EAT =(1+&)a+(2+¢)(1-0)

=2+¢c—0q

Effective Access Time

¢=0.1

EAT =

2+¢ec-q

5% 2.05
10% 2
50% 1.6
80% 1.3

1.12

Paging Hardware With TLB

* Needs to be really fast
* Critical path of memory access

* Needs to have very few conflicts!
» With TLB, the Miss Time extremely highl

* How big does TLB actually have to be?
* Usually small: 128-512 entries

Memory Protection

* User cannot modify the page table mapping

* Memory protection implemented by associating
protection bit with each frame

» Valid-invalid bit attached to each entry in the page table:

» “valid” indicates that the associated page is in the process’
logical address space, and is thus a legal page

* “invalid” indicates that the page is not in the process’ logical
address space

Paging

* Valid (v) or Invalid (i) Bit In A Page Table

Frame Valid-invalid 0
Dage O number bit 1
bage 1 Ol 2| v 2
Page 2 H 3w 3
S 2l 4| v :
el 37| v Z
Page 4 418 | v 7
Page S 59 | v 8
.I_Pfg_e_6_: 61 0| i 7
710 | i

77

Shared Pages

* Shared code

* One copy of read-only code shared among processes (i.e.,
text editors).

* Private code and data

* Each process keeps a separate copy of the code and data

* The pages for the private code and data can appear
anywhere in the logical address space

Shared Pages Example

Ed 1 3 (1)
Ed 2 4)
Ed 3 6 3
Datal | |1 Ed 1 3 A
. iaagfe 1 =02 . 5
Ed 3 6 6

Ed1 3 Data 3 || 2 7
Ed2 4] P Tl
Ed 3 6 9
Data2 | | 7/ 10
P2 Page 11

table 2 .

Structure of the Page Table

Structure of the Page Table

* A logical address (on 32-bit machine with 4K page size)
is divided into:
* a page humber consisting of 20 bits
* a page offset consisting of 12 bits

* How many pages?
«2732/2712=2"20

* What is the size of the page table, if each item of the
page table takes 4B?
« 4MB

Structure of the Page Table

* Hierarchical Page Tables
- Hashed Page Tables
* Inverted Page Tables

82

Hierarchical Page Tables

* Break up the logical address space into multiple page
tables

* A simple technique is a two-level page table

83

Two-Level Page-Table Scheme

Outer
Page
Table
Memory
Page
Table

84

Two-Level Paging Example

* Since the page table is paged, the page number is further divided
Into:
* a 10-bit page number
* a 10-bit page offset

* Thus, a logical address is as follows:

page number | page offset

10 10 12

where p|1n is an index into the outer page table, and p, is the displacement

within the page of the outer page table %

Address-Translation Scheme

Logical address

p1 | po | d

P1{
P2
Outer
Page

Table

Page of
page table

86

Three-level Paging Scheme

outer page Inner page offset
42 10 12

2nd outer page . outer page innerpage offset
P1 P> P3 d
32 10 10 12

87

Hierarchical Paging Analysis

* Pros:
 Easy memory allocation
* Easy sharing
* Cons:
* Page tables need to be contiguous
» Two (or more, if >2 levels) lookups per reference

88

Hashed Page Tables

* In common address spaces > 32 bits

* The logical page number is hashed into a page table

» This page table contains a chain of elements hashing to the
same location

* Logical page numbers are compared in this chain
searching for a match

* If a match is found, the corresponding physical frame is
extracted

Hashed Page Table

Logical

Address !

physical
Address

H(p)

)

m = q g->||3f->...

Hash Table Memory

90

Hashed Page Tables

» Size of page table is at least as large as amount of
logical memory allocated to processes

* Physical memory may be much less
* Much of process space may be out on disk or not in use

91

Inverted Page Table

* One entry for each real page of memory

* Entry consists of the logical address of the page
stored in that real memory location, with information
about the process that owns that page

* Decreases memory needed to store each page table,
but increases time needed to search the table when a

page reference occurs

Inverted Page Table

P1

o

w N - O

P2

> W NN O
~N~ oo o0~ WO N B O

Inverted Page Table

93

Inverted Page Table

Logical physical
Address Address

Inverted Page Table

Memory o

Inverted Page Tables

» Systems that use inverted page tables have difficulty
implementing shared memory.

95

Segmentation

96

Segmentation

* Memory-management scheme that supports user view
of memory

* A program is a collection of segments. A segment is a
logical unit such as:
main program,
procedure,
function,
local variables, global variables,
stack,

User’s View of a Program

Main
slgelelglely] | Symbol

Table

Subroutine

Logical

address

space

98

Logical View of Segmentation

S’rack

Main
s]gelelgely} | Symbol
Table

Table

Subroutine

Subroutine .
Main
user view " physical program
of memory qr memory

space sq r{

space

More Flexible Segmentation

* Logical View: multiple separate segments
 Typical: Code, Data, Stack
« Others: memory sharing, etc

« Each segment is given region of contiguous memory
 Has a base and limit

Stack

Symbol
Table

Main
program Symbol

Table

Main
program Symbol

Table

Subroutine

Subroutine Subroutine
Main
Logical - user view N physical program
address sqrt : of memory Sqr memory

sqrt
space Space d 100

Segmentation Architecture

* Logical address consists of a two tuple :
<segment-number, offset>,

« Segment table — maps two-dimensional physical addresses; each
table entry has:

* base — contains the starting physical address where the segments reside in
memory

* limit — specifies the length of the segment

« Segment-table base register (STBR) points to the segment table’s
location in memory

» Segment-table length register (STLR) indicates number of
segments used by a program;

segment number s is legal if s < STLR

Segmentation Architecture

Seg Offset
15 14 13

Main

Jgele[gelly] | Symbol
Table

IEHHHHH!HIHHI\

squ

0100 |0
11120 |120
21140 |240
31140 |400
41100 |540
user view physical
of memory memory
space space

0
100
120
Symbol
Table
240
Subroutine
380
400
Main
program
540
sqgrt
640

102

Segmentation Hardware

Logical Segment Table

Trap: address error Memory

103

Segmentation Hardware With TLB

Logical
Address l

> > Y
s b | IR
d hit
>
Y
TLB TLB
miss
s {
]
Segment Table Memory

104

Shared Segments Example

0
80
cditor | [IS ‘
0(160 |80 q 240
atal
140 240 280
iror | [TS
0/160 |80 420
140 380
. physical
code sharing occurs at memory

segment level Space

105

Segmentation Architecture

* Protection

* With each entry in segment table associate:
* validation bit = 0 illegal segment
* read/write/execute privileges

106

Segmentation with Paging

» Divide each segment into blocks of same size.

Seg num Page num Offset

107

Segmentation with Paging

Segmentl Segment?2 Segment3 108

Segmentation with Paging

Seg num Page num Offset
s p d

]
l l I
| R — -
I I
I Physical |
I b Address |
S '< I I
| p I
I]
.
I]
I I
I]
| . I
Segmentation : Paging '

Memory

109

Summary

* Memory is a resource that must be shared

 Translation: Change Logical Addresses into Physical
Addresses

* Protection: Prevent unauthorized Sharing of resources

» Simple contiguous memory allocation
* Base+limit registers restrict memory accessible to user
* Can be used to translate as well

* Full franslation of addresses through Memory
Management Unit (MMU)

Summary

* Page Tables
« Memory divided into fixed-sized chunks of memory

* Logical page humber from logical address mapped through page table to physical
page humber

« Offset of logical address same as physical address
* Large page tables can be placed into logical memory

* Multi-Level Tables

* Logical address mapped to series of tables
 Permit sparse population of address space

* Hashed page table
* Inverted page table
* Segment Mapping

 Each segment contains base and limit information
« Offset (rest of address) adjusted by adding base

Memory Logical Addresses
Management vs. Physical Addresses

Address Mapping

Allocation
Algorithm External
vs. Internal

Fragmen-
tation TLB

Principle EAT

Address Mapping

Page Table Structure
Protection and Sharing
Principle

Address Mapping

Protection and Sharing 112

Summary

Logical Addresses vs. Physical Addresses

Address Protection Sharing Fragmentation
Mapping
External Internal
Contiguous
Allocation
Paging
Segmentation
Segmentation

with Paging

113

Homework

114

Homework

« Exercises
« EX-32 (Page 494):
« 9.13,9.15

115

	Slide 1: Main Memory
	Slide 2: Course Review
	Slide 3: What are the four requirements for Deadlock?
	Slide 4: What are the methods for handling deadlocks?
	Slide 5: How the Banker’s algorithm works? (safty)
	Slide 6: How the Banker’s algorithm works? (request)
	Slide 7: How to detect deadlocks? (detection algorithm)
	Slide 8: What to do when detect deadlocks?
	Slide 9: Main Memory
	Slide 10: Outline
	Slide 11: Background
	Slide 12: Recall
	Slide 13: Background
	Slide 14: Process in Memory
	Slide 15: User’s View of a Program
	Slide 16: Recall
	Slide 17: Computer System Organization
	Slide 18: Main memory
	Slide 19: Main memory
	Slide 20: Storage-Device Hierarchy
	Slide 21: Memory
	Slide 22: Memory Management
	Slide 23: Two Views of Memory
	Slide 24: Logical vs. Physical Address Space
	Slide 25: Address binding scheme: in compile time
	Slide 26: Address binding scheme: in compile time
	Slide 27: Address binding scheme: in load time
	Slide 28: Address binding scheme: in load time
	Slide 29: Dynamic Relocation
	Slide 30: Memory-Management Unit (MMU)
	Slide 31: Memory-Management Unit (MMU)
	Slide 32: Memory Management Requirement
	Slide 33: Contiguous Memory Allocation
	Slide 34: Fixed Partition
	Slide 35: Fixed Partition
	Slide 36: Dynamically Partition
	Slide 37: Dynamic Storage-Allocation Problem
	Slide 38: Contiguous Memory Allocation
	Slide 39: Base and Limit Registers
	Slide 40: Base and Limit Registers
	Slide 41: Base and Limit Registers
	Slide 42: Dynamic Storage-Allocation Problem
	Slide 43: First-fit
	Slide 44: Best-fit
	Slide 45: Worst-fit
	Slide 46: Next-fit
	Slide 47: Exercise
	Slide 48: Fragmentation
	Slide 49: Fragmentation
	Slide 50: Fragmentation
	Slide 51: Fragmentation
	Slide 52: Fragmentation
	Slide 53: Compaction
	Slide 54: Contiguous Memory Allocation
	Slide 55: Contiguous Memory Allocation
	Slide 56: Paging
	Slide 57: Paging
	Slide 58: Paging
	Slide 59: How to allocate?
	Slide 60: How to allocate?
	Slide 61: How to allocate?
	Slide 62: Address Translation Scheme
	Slide 63: How to allocate?
	Slide 64: Paging Hardware
	Slide 65: Paging
	Slide 66: Free Frames
	Slide 67: Implementation of Page Table
	Slide 68: Implementation of Page Table
	Slide 69: Paging Hardware With TLB
	Slide 70: Paging Hardware With TLB
	Slide 71: Paging Hardware With TLB
	Slide 72: Why Does TLB Help? Locality!
	Slide 73: Effective Access Time
	Slide 74: Effective Access Time
	Slide 75: Paging Hardware With TLB
	Slide 76: Memory Protection
	Slide 77: Paging
	Slide 78: Shared Pages
	Slide 79: Shared Pages Example
	Slide 80: Structure of the Page Table
	Slide 81: Structure of the Page Table
	Slide 82: Structure of the Page Table
	Slide 83: Hierarchical Page Tables
	Slide 84: Two-Level Page-Table Scheme
	Slide 85: Two-Level Paging Example
	Slide 86: Address-Translation Scheme
	Slide 87: Three-level Paging Scheme
	Slide 88: Hierarchical Paging Analysis
	Slide 89: Hashed Page Tables
	Slide 90: Hashed Page Table
	Slide 91: Hashed Page Tables
	Slide 92: Inverted Page Table
	Slide 93: Inverted Page Table
	Slide 94: Inverted Page Table
	Slide 95: Inverted Page Tables
	Slide 96: Segmentation
	Slide 97: Segmentation
	Slide 98: User’s View of a Program
	Slide 99: Logical View of Segmentation
	Slide 100: More Flexible Segmentation
	Slide 101: Segmentation Architecture
	Slide 102: Segmentation Architecture
	Slide 103: Segmentation Hardware
	Slide 104: Segmentation Hardware With TLB
	Slide 105: Shared Segments Example
	Slide 106: Segmentation Architecture
	Slide 107: Segmentation with Paging
	Slide 108: Segmentation with Paging
	Slide 109: Segmentation with Paging
	Slide 110: Summary
	Slide 111: Summary
	Slide 112
	Slide 113: Summary
	Slide 114: Homework
	Slide 115: Homework
	Slide 116: Thank you!

