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• Mutual exclusion
• Only one process at a time can use a resource.

• Hold and wait
• Process is holding at least one resource and is waiting to acquire additional resources 

held by other processes

• No preemption
• Resources are released only voluntarily by the process holding the resource, after 

process is finished with it

• Circular wait
• There exists a set {T1, …, Tn} of waiting processes

• T1 is waiting for a resource that is held by T2

• T2 is waiting for a resource that is held by T3

• …

• Tn is waiting for a resource that is held by T1
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What are the four requirements for Deadlock?



• Ignore the problem and pretend that deadlocks never 
occur in the system
• Used by most operating systems, including UNIX and Windows

• Ensure that the system will never enter a deadlock state
• deadlock prevention
• deadlock avoidance

• Allow the system to enter a deadlock state and then 
recover
• deadlock detection
• deadlock recovery
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What are the methods for handling deadlocks?



How the Banker’s algorithm works? (safty)

1. Let Work and Finish be vectors of length m and n, respectively. Initialize:

(a) Work = Available

(b) Finish [i] = false for i = 0, 1, …, n- 1.

2. Find an i such that both: 

(a) Finish [i] = false

(b) Needi  Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi

Finish[i] = true

go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe state.
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• Requesti = request vector for process Pi.

• If Requesti [j] = k then process Pi wants k instances of resource 
type Rj.

1. If Requesti  Needi go to step 2. Otherwise, raise error condition, 
since process has exceeded its maximum claim.

2. If Requesti  Available, go to step 3. Otherwise Pi must wait, since 
resources are not available.

3. Pretend to allocate requested resources to Pi by modifying the state 
as follows:

 Available = Available – Request;
 Allocationi = Allocationi + Requesti;
 Needi = Needi – Requesti;

• If safe  the resources are allocated to Pi. 
• If unsafe  Pi must wait, and the old resource-allocation state is restored
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How the Banker’s algorithm works? (request)



• 1. Let Work and Finish be vectors of length m and n, respectively. Initialize:

• (a) Work = Available

• (b) For i = 1,2, …, n, if Allocationi ≠ 0, then

 Finish[i] = false; otherwise, Finish[i] = true.

• 2. Find an index i such that both:

• (a) Finish[i] == false

• (b) Requesti ≤ Work

• If no such i exists, go to step 4.

• 3. Work = Work + Allocationi

     Finish[i] = true

     go to step 2.

• 4. If Finish[i] == false, for some i, 1≤i≤n, then the system is in deadlock state. 
Moreover, if Finish[i] == false, then Pi is deadlocked. 7

How to detect deadlocks? (detection algorithm)



What to do when detect deadlocks?

• Terminate process, force it to give up resources

• Preempt resources without killing off process 

• Roll back actions of deadlocked processes 

• Many operating systems use other options
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Main Memory
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• Background

• Contiguous Memory Allocation

• Paging

• Structure of the Page Table

• Segmentation

10

Outline



Background
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Recall

• Program must be brought (from disk) into memory and 
placed within a process for it to be run
• All data in memory before and after processing

• All instructions in memory in order to execute
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Process in Memory
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User’s View of a Program

15

Logical
address
 space 

Stack

Symbol 
Table

Main 
program

Subroutine

sqrt



• Program must be brought (from disk) into memory and 
placed within a process for it to be run
• All data in memory before and after processing

• All instructions in memory in order to execute

• Main memory and registers are the only storage which 
CPU can access directly
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Computer System Organization

• Computer-system operation
• One or more CPUs, device controllers connect through 

common bus providing access to shared memory

• Concurrent execution of CPUs and devices competing for 
memory cycles

17



Main memory
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Main memory

• Address Space:
• All the addresses and state a 

process can touch

• Main memory usually divided 
into two partitions:
• Resident operating system, usually 

held in low memory

• User processes then held in high 
memory
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Storage-Device Hierarchy
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Memory Management

• Memory management activities
• Keeping track of which parts of memory are currently being 

used and by whom

• Deciding which processes (or parts thereof) and data to 
move into and out of memory

• Allocating and deallocating memory space as needed

22



23

Two Views of Memory

Source
code

int a;

…

a++;

Object 
module 

In
memory 

compile

MOV AX,[?]

INC AX

MOV [?],AX

load

MOV AX,[2]

INC AX

MOV [2],AX

Execute 

View from the CPU

(what program sees)

View from memory

(physical memory)

Translation box

(converts between

the two views)



Logical vs. Physical Address Space

• Logical address – generated by the CPU

• Physical address – address seen by the memory unit

• Logical and physical addresses are the same in compile-
time and load-time address-binding schemes

• Logical and physical addresses differ in execution-time 
address-binding scheme
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Address binding scheme: in compile time

• Address binding of instructions and data to memory 
addresses happen at:
• 1. Compile time:  If memory location known a priori, 
absolute code can be generated; must recompile code if 
starting location changes.
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Address binding scheme: in compile time

• Example
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Address binding scheme: in load time

• Address binding of instructions and data to memory 
addresses happen at
• 2. Load time: must generate relocatable code if memory 

location is not known at compile time
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Address binding scheme: in load time

• Example

int a;

…

a++;

MOV  AX, a

INC  AX

MOV  a, AX
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INC  AX

MOV  [11],AX
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Dynamic Relocation

• Address binding of instructions and data to memory 
addresses happen at
• 3. Execution time:  Binding delayed until run time if the 

process can be moved during its execution from one memory 
segment to another.  Need hardware support for address 
maps (e.g., base and limit registers)
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Memory-Management Unit (MMU)

• Hardware device that maps logical address to physical 
address

• In MMU scheme, the value in the relocation register is 
added to every address generated by a user process at 
the time it is sent to memory

• The user program deals with logical addresses; it never 
sees the real physical addresses
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Memory-Management Unit (MMU)

• Dynamic relocation using a relocation register
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Memory Management Requirement

• Protection
• Processes should not be able to reference memory locations 

in another process without permission

• Sharing
• Allow several processes to access the same portion of 

memory

• Better to allow each process access to the same copy of the 
program rather than have their own separate copy
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Contiguous Memory Allocation
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Fixed Partition

• One job each partition

• In multiple queues, each process is 
assigned to the smallest partition in 
which it fits and minimizes the 
internal fragmentation problem.
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Fixed Partition

• In single queue, the 
process is assigned to the 
smallest available partition 
and the level of 
multiprogramming is 
increased.

• Main memory use is 
inefficient. Any program, 
no matter how small, 
occupies an entire 
partition.

35

Single input queue Partition 4

Partition 3

Partition 2

Partition 1

OS

700K

400K

100K

0

200K

800K



Dynamically Partition

• Multiple-partition allocation
• Hole – block of available memory; holes of various size are 

scattered throughout memory
• When a process arrives, it is allocated memory from a hole 

large enough to accommodate it
• Operating system maintains information about:

a) allocated partitions; b) free partitions (hole)
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Dynamic Storage-Allocation Problem
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Contiguous Memory Allocation

• Relocation registers used to protect user processes 
from each other, and from changing operating-system 
code and data
• Base register contains value of smallest physical address

• Limit register contains range of logical addresses – each 
logical address must be less than the limit register 

• MMU maps logical address dynamically
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Base and Limit Registers

• A pair of base and limit 
registers define the logical 
address space
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Base and Limit Registers
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Base and Limit Registers

• Can use base & bounds/limit for dynamic address translation 
(Simple form of “segmentation”):

• This gives program the illusion that it is running on its own 
dedicated machine, with memory starting at 0
• Program gets continuous region of memory

• Addresses within program do not have to be relocated when program 
placed in different region of DRAM
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Dynamic Storage-Allocation Problem

• How to satisfy a request of size n from a list of free 
holes
• First-fit:  Allocate the first hole that is big enough

• Best-fit:  Allocate the smallest hole that is big enough; must 
search entire list, unless ordered by size  
• Produces the smallest leftover hole

• Worst-fit:  Allocate the largest hole; must also search entire list  
• Produces the largest leftover hole

• Next-fit:  Scans memory from the location of the last placement

• First-fit and best-fit better than worst-fit in terms of speed 
and storage utilization
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First-fit
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Best-fit
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Worst-fit
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Next-fit
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Exercise

• Given memory partitions, which are 100K, 450K, 250K, 
300K and 600K

• There are four processes in order: 212K, 417K, 112K, 
and 426K.

• In order to place processes in the memory, there are 
three algorithms: the first-fit algorithm, the best-fit 
algorithm, and the next-fit algorithm. Of the three 
algorithms, which one makes the best use of memory 
space?
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Fragmentation
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Fragmentation

• External Fragmentation – total memory space exists 
to satisfy a request, but it is not contiguous
• External fragmentation is the phenomenon in which free 

storage becomes divided into many small pieces over time.

• The term "external" refers to the fact that the unusable 
storage is outside the allocated regions. 
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Fragmentation

• Consider a multiple-partition allocation scheme with a 
hole of 18,464 bytes. Suppose that the next process 
requested 18,462 bytes. If we allocate exactly the 
requested block, we are left with a hole of 2 bytes. 

• The overhead to keep track of this hole will be 
substantially larger than the hole itself. 
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Fragmentation

• The general approach to avoiding this problem is to 
break the physical memory into fixed-sized blocks and 
allocate memory in units based on block size. 

• With this approach, the memory allocated to a process 
may be slightly larger than the requested memory. 

• The difference between these two approaches is 
internal fragmentation - memory that is internal to a 
partition but is not being used.
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Fragmentation

• Reduce external fragmentation by compaction
• Shuffle memory contents to place all free memory together 

in one large block
• However, it is somewhat expensive.

• Compaction is possible only if relocation is dynamic, and is 
done at execution time
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Compaction 
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Contiguous Memory Allocation

• Base and Limit Pros: Simple, fast

• Fragmentation problem
• Not every process is in the same size

• Over time, memory space becomes fragmented

• Missing support for sparse address space
• Would like to have multiple chunks/program

• E.g.: Code, Data, Stack

• Hard to do inter-process sharing
• Want to share code segments when possible

• Want to share memory between processes
54



Contiguous Memory Allocation

• Is there a scheme without External Fragmentation?
• Of course!
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Paging
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Paging
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Paging

• Physical address space of a process can be noncontiguous; 
process is allocated physical memory whenever the latter 
is available

• Divide physical memory into fixed-sized blocks called 
frames 
• Size is power of 2

• Typically have small pages (1K-16K) 

• Divide logical memory into blocks of same size called 
pages
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How to allocate?

• 32-byte memory and 4-byte pages
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How to allocate?

• 32-byte memory and 4-byte pages
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How to allocate?

• 32-byte memory and 4-byte pages
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Address Translation Scheme

• Address generated by CPU is divided into:
• Page number (p) – used as an index into a page table which 

contains base address of each page in physical memory

• Page offset (d) – combined with base address to define the 
physical memory address that is sent to the memory unit

• For given logical address space 2m and page size 2n
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How to allocate?

• 32-byte memory and 4-byte pages
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Paging Hardware
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Paging

• Keep track of all free frames

• To run a program of size n pages, need to find n free 
frames and load program

• Set up a page table to translate logical to physical 
addresses

• No external fragmentation

• May has internal fragmentation
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Implementation of Page Table

• The page table is contiguous in main memory 

• Page-table base register (PTBR) points to the page 
table

• Page-table length register (PRLR) indicates size of the 
page table
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Implementation of Page Table

• In this scheme every data/instruction access requires 
two memory accesses.  
• One for the page table, and 

• One for the data/instruction.

• The two memory access problem can be solved by the 
use of a special fast-lookup hardware cache called 
associative memory or translation look-aside buffers 
(TLBs)
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Paging Hardware With TLB
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Paging Hardware With TLB

• If the page number is not in the TLB (known as a TLB 
miss), a memory reference to the page table must be 
made. When the frame number is obtained, we can use 
it to access memory. 

• In addition, we add the page number and frame number 
to the TLB, so that they will be found quickly on the 
next reference. 

• If the TLB is already full of entries, the operating 
system must select one for replacement. 
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Paging Hardware With TLB
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Why Does TLB Help? Locality!
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Effective Access Time

• Associative Lookup =  time unit

• Assume memory cycle time is 1 time unit

• Hit ratio – percentage of times that a page number is 
found in the associative registers; ratio related to 
number of associative registers
• Hit ratio = 

• Effective Access Time (EAT)

EAT  = (1 + )  + (2 + )(1 – )

               = 2 +  – 
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Effective Access Time
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Paging Hardware With TLB

• Needs to be really fast
• Critical path of memory access 

• Needs to have very few conflicts!
• With TLB, the Miss Time extremely high!

• How big does TLB actually have to be?
• Usually small: 128-512 entries
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Memory Protection

• User cannot modify the page table mapping

• Memory protection implemented by associating 
protection bit with each frame

• Valid-invalid bit attached to each entry in the page table:
• “valid” indicates that the associated page is in the process’ 

logical address space, and is thus a legal page

• “invalid” indicates that the page is not in the process’ logical 
address space
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Paging

• Valid (v) or Invalid (i) Bit In A Page Table
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• Shared code
• One copy of read-only code shared among processes (i.e., 

text editors).

• Private code and data 
• Each process keeps a separate copy of the code and data
• The pages for the private code and data can appear 

anywhere in the logical address space
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Shared Pages Example
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Structure of the Page Table
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Structure of the Page Table

• A logical address (on 32-bit machine with 4K page size) 
is divided into:
• a page number consisting of 20 bits

• a page offset consisting of 12 bits

• How many pages?
• 2^32/2^12=2^20

• What is the size of the page table, if each item of the 
page table takes 4B?
• 4MB
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Structure of the Page Table

• Hierarchical Page Tables

• Hashed Page Tables

• Inverted Page Tables
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Hierarchical Page Tables

• Break up the logical address space into multiple page 
tables

• A simple technique is a two-level page table
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Two-Level Page-Table Scheme
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Two-Level Paging Example

• A logical address (on 32-bit machine with 4K page) is divided into:
• a page number consisting of 20 bits
• a page offset consisting of 12 bits

• Since the page table is paged, the page number is further divided 
into:
• a 10-bit page number 
• a 10-bit page offset

• Thus, a logical address is as follows:

where p1 is an index into the outer page table, and p2 is the displacement 
within the page of the outer page table 85

page number page offset

p1 p2 d

10 10 12



Address-Translation Scheme
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Three-level Paging Scheme
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Hierarchical Paging Analysis

• Pros:
• Easy memory allocation

• Easy sharing

• Cons:
• Page tables need to be contiguous

• Two (or more, if >2 levels) lookups per reference
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Hashed Page Tables

• In common address spaces > 32 bits

• The logical page number is hashed into a page table
• This page table contains a chain of elements hashing to the 

same location

• Logical page numbers are compared in this chain 
searching for a match
• If a match is found, the corresponding physical frame is 

extracted
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Hashed Page Table
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Hashed Page Tables

• Size of page table is at least as large as amount of 
logical memory allocated to processes

• Physical memory may be much less
• Much of process space may be out on disk or not in use
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Inverted Page Table

• One entry for each real page of memory

• Entry consists of the logical address of the page 
stored in that real memory location, with information 
about the process that owns that page

• Decreases memory needed to store each page table, 
but increases time needed to search the table when a 
page reference occurs
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Inverted Page Table
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Inverted Page Table
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Inverted Page Tables

• Systems that use inverted page tables have difficulty 
implementing shared memory. 
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Segmentation
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Segmentation

• Memory-management scheme that supports user view 
of memory 

• A program is a collection of segments. A segment is a 
logical unit such as:

  main program,
  procedure, 
  function,
  local variables, global variables,
  stack,
  ……
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User’s View of a Program
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Logical View of Segmentation
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More Flexible Segmentation

• Logical View: multiple separate segments
• Typical: Code, Data, Stack
• Others: memory sharing, etc

• Each segment is given region of contiguous memory
• Has a base and limit
• Can reside anywhere in physical memory
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Segmentation Architecture

• Logical address consists of a two tuple :

<segment-number, offset>,

• Segment table – maps two-dimensional physical addresses; each 
table entry has:
• base – contains the starting physical address where the segments reside in 

memory

• limit – specifies the length of the segment

• Segment-table base register (STBR) points to the segment table’s 
location in memory

• Segment-table length register (STLR) indicates number of 
segments used by a program;

segment number s is legal if s < STLR
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Segmentation Architecture
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Segmentation Hardware
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Segmentation Hardware With TLB
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Shared Segments Example
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• Protection
• With each entry in segment table associate:

• validation bit = 0  illegal segment

• read/write/execute privileges
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Segmentation with Paging

• Divide each segment into blocks of same size.
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Segmentation with Paging
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Segmentation with Paging
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• Memory is a resource that must be shared
• Translation: Change Logical Addresses into Physical 

Addresses

• Protection: Prevent unauthorized Sharing of resources

• Simple contiguous memory allocation
• Base+limit registers restrict memory accessible to user

• Can be used to translate as well

• Full translation of addresses through Memory 
Management Unit (MMU)
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Summary

• Page Tables
• Memory divided into fixed-sized chunks of memory
• Logical page number from logical address mapped through page table to physical 

page number
• Offset of logical address same as physical address
• Large page tables can be placed into logical memory

• Multi-Level Tables
• Logical address mapped to series of tables
• Permit sparse population of address space

• Hashed page table
• Inverted page table 
• Segment Mapping

• Each segment contains base and limit information 
• Offset (rest of address) adjusted by adding base
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Summary
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Homework
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Homework

• Exercises
• EX-32 (Page 494): 

• 9.13, 9.15



Thank you!

Q & A
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