
Di Zhang

School of Software Engineering

Operating System

Main Memory

Course Review

2

• Mutual exclusion
• Only one process at a time can use a resource.

• Hold and wait
• Process is holding at least one resource and is waiting to acquire additional resources

held by other processes

• No preemption
• Resources are released only voluntarily by the process holding the resource, after

process is finished with it

• Circular wait
• There exists a set {T1, …, Tn} of waiting processes

• T1 is waiting for a resource that is held by T2

• T2 is waiting for a resource that is held by T3

• …

• Tn is waiting for a resource that is held by T1

3

What are the four requirements for Deadlock?

• Ignore the problem and pretend that deadlocks never
occur in the system
• Used by most operating systems, including UNIX and Windows

• Ensure that the system will never enter a deadlock state
• deadlock prevention
• deadlock avoidance

• Allow the system to enter a deadlock state and then
recover
• deadlock detection
• deadlock recovery

4

What are the methods for handling deadlocks?

How the Banker’s algorithm works? (safty)

1. Let Work and Finish be vectors of length m and n, respectively. Initialize:

(a) Work = Available

(b) Finish [i] = false for i = 0, 1, …, n- 1.

2. Find an i such that both:

(a) Finish [i] = false

(b) Needi  Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi

Finish[i] = true

go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe state.

5

• Requesti = request vector for process Pi.

• If Requesti [j] = k then process Pi wants k instances of resource
type Rj.

1. If Requesti  Needi go to step 2. Otherwise, raise error condition,
since process has exceeded its maximum claim.

2. If Requesti  Available, go to step 3. Otherwise Pi must wait, since
resources are not available.

3. Pretend to allocate requested resources to Pi by modifying the state
as follows:

 Available = Available – Request;
 Allocationi = Allocationi + Requesti;
 Needi = Needi – Requesti;

• If safe  the resources are allocated to Pi.
• If unsafe  Pi must wait, and the old resource-allocation state is restored

6

How the Banker’s algorithm works? (request)

• 1. Let Work and Finish be vectors of length m and n, respectively. Initialize:

• (a) Work = Available

• (b) For i = 1,2, …, n, if Allocationi ≠ 0, then

 Finish[i] = false; otherwise, Finish[i] = true.

• 2. Find an index i such that both:

• (a) Finish[i] == false

• (b) Requesti ≤ Work

• If no such i exists, go to step 4.

• 3. Work = Work + Allocationi

 Finish[i] = true

 go to step 2.

• 4. If Finish[i] == false, for some i, 1≤i≤n, then the system is in deadlock state.
Moreover, if Finish[i] == false, then Pi is deadlocked. 7

How to detect deadlocks? (detection algorithm)

What to do when detect deadlocks?

• Terminate process, force it to give up resources

• Preempt resources without killing off process

• Roll back actions of deadlocked processes

• Many operating systems use other options

8

Main Memory

9

• Background

• Contiguous Memory Allocation

• Paging

• Structure of the Page Table

• Segmentation

10

Outline

Background

11

Recall

• Program must be brought (from disk) into memory and
placed within a process for it to be run
• All data in memory before and after processing

• All instructions in memory in order to execute

12

Background

13

Source
code

Object
module

In
memory

compile load Execute

Process in Memory

14

PCB

Stack

Current top
of stack

Program

Data

Entry point
to program

Process
control

information

Reference
to data

Branch
instruction

Increasing
address
values

User’s View of a Program

15

Logical
address
 space

Stack

Symbol
Table

Main
program

Subroutine

sqrt

• Program must be brought (from disk) into memory and
placed within a process for it to be run
• All data in memory before and after processing

• All instructions in memory in order to execute

• Main memory and registers are the only storage which
CPU can access directly

16

Recall

Computer System Organization

• Computer-system operation
• One or more CPUs, device controllers connect through

common bus providing access to shared memory

• Concurrent execution of CPUs and devices competing for
memory cycles

17

Main memory

18

Main memory

• Address Space:
• All the addresses and state a

process can touch

• Main memory usually divided
into two partitions:
• Resident operating system, usually

held in low memory

• User processes then held in high
memory

19

Operation
System

User
Processes

0b0000 0000

0bFFFF FFFF

Storage-Device Hierarchy

20

21

Memory

CPU

µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs)

DRAM

1

10

100

1000

1
9
8
0

1
9
8
1

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

1
9
8
2

Processor-Memory
Performance Gap:
(grows 50% / year)

P
e
rf

or
m
a
n
ce

Time

“Moore’s Law”

Processor-DRAM Memory Gap (latency)

“Less’ Law?”

Memory Management

• Memory management activities
• Keeping track of which parts of memory are currently being

used and by whom

• Deciding which processes (or parts thereof) and data to
move into and out of memory

• Allocating and deallocating memory space as needed

22

23

Two Views of Memory

Source
code

int a;

…

a++;

Object
module

In
memory

compile

MOV AX,[?]

INC AX

MOV [?],AX

load

MOV AX,[2]

INC AX

MOV [2],AX

Execute

View from the CPU

(what program sees)

View from memory

(physical memory)

Translation box

(converts between

the two views)

Logical vs. Physical Address Space

• Logical address – generated by the CPU

• Physical address – address seen by the memory unit

• Logical and physical addresses are the same in compile-
time and load-time address-binding schemes

• Logical and physical addresses differ in execution-time
address-binding scheme

24

Address binding scheme: in compile time

• Address binding of instructions and data to memory
addresses happen at:
• 1. Compile time: If memory location known a priori,
absolute code can be generated; must recompile code if
starting location changes.

25

Source
code

int a;

…

a++;

Object
module

In
memory

compile load

MOV AX,[2]

INC AX

MOV [2],AX

Execute

Address binding scheme: in compile time

• Example

26

int a;

…

a++;

MOV AX, a

INC AX

MOV a, AX

a

0
1
2
3
4
5
6

8
7

9
10
11
12
13
14
15

MOV AX,[2]

INC AX

MOV [2],AX

Huge.exe

…

int A[14];

…

A

Where is a

Address binding scheme: in load time

• Address binding of instructions and data to memory
addresses happen at
• 2. Load time: must generate relocatable code if memory

location is not known at compile time

27

Source
code

int a;

…

a++;

Object
module

In
memory

compile load

MOV AX,[2]

INC AX

MOV [2],AX

Execute

MOV AX,[0]

INC AX

MOV [0],AX

Address binding scheme: in load time

• Example

int a;

…

a++;

MOV AX, a

INC AX

MOV a, AX

a

0
1
2
3
4
5
6

8
7

9
10
11
12
13
14
15

a

20

110

MOV AX,[0]

INC AX

MOV [0],AX

MOV AX,[2]

INC AX

MOV [2],AX

MOV AX,[11]

INC AX

MOV [11],AX

28

Dynamic Relocation

• Address binding of instructions and data to memory
addresses happen at
• 3. Execution time: Binding delayed until run time if the

process can be moved during its execution from one memory
segment to another. Need hardware support for address
maps (e.g., base and limit registers)

29

Source
code

int a;

…

a++;

Object
module

In
memory

compile

MOV AX,[0]

INC AX

MOV [0],AX

load

MOV AX,[2]

INC AX

MOV [2],AX

Execute

Memory-Management Unit (MMU)

• Hardware device that maps logical address to physical
address

• In MMU scheme, the value in the relocation register is
added to every address generated by a user process at
the time it is sent to memory

• The user program deals with logical addresses; it never
sees the real physical addresses

30

Physical
Addresses

CPU MMU

Logical
Addresses

Memory-Management Unit (MMU)

• Dynamic relocation using a relocation register

31

Memory Management Requirement

• Protection
• Processes should not be able to reference memory locations

in another process without permission

• Sharing
• Allow several processes to access the same portion of

memory

• Better to allow each process access to the same copy of the
program rather than have their own separate copy

32

Contiguous Memory Allocation

33

Fixed Partition

• One job each partition

• In multiple queues, each process is
assigned to the smallest partition in
which it fits and minimizes the
internal fragmentation problem.

34

Multiple input queues

Partition 4

Partition 3

Partition 2

Partition 1

OS

700K

400K

100K

0

200K

800K

Fixed Partition

• In single queue, the
process is assigned to the
smallest available partition
and the level of
multiprogramming is
increased.

• Main memory use is
inefficient. Any program,
no matter how small,
occupies an entire
partition.

35

Single input queue Partition 4

Partition 3

Partition 2

Partition 1

OS

700K

400K

100K

0

200K

800K

Dynamically Partition

• Multiple-partition allocation
• Hole – block of available memory; holes of various size are

scattered throughout memory
• When a process arrives, it is allocated memory from a hole

large enough to accommodate it
• Operating system maintains information about:

a) allocated partitions; b) free partitions (hole)

36

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

process 9

OS

process 5

process 9

process 2

process 10

Dynamic Storage-Allocation Problem

37

head tail length 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Process 1

Process 3

Process 4

0 1 2 4 5 2 11 13 3head

Process 2

Process 5
0 1 2 11 13 3head

0 1 2 6 7 2 11 13 3head

0 1 2 6 7 2 11 13 3head 8 10 3

0 1 2 6 13 7head

Contiguous Memory Allocation

• Relocation registers used to protect user processes
from each other, and from changing operating-system
code and data
• Base register contains value of smallest physical address

• Limit register contains range of logical addresses – each
logical address must be less than the limit register

• MMU maps logical address dynamically

38

Base and Limit Registers

• A pair of base and limit
registers define the logical
address space

39

Base and Limit Registers

40

0
1
2
3
4
5
6

8
7

9
10
11
12
13
14
15

a
b
c
d
e
f
g

Base=5

Limit=7

Base and Limit Registers

• Can use base & bounds/limit for dynamic address translation
(Simple form of “segmentation”):

• This gives program the illusion that it is running on its own
dedicated machine, with memory starting at 0
• Program gets continuous region of memory

• Addresses within program do not have to be relocated when program
placed in different region of DRAM

41

DRAM

≥?

+

Base

Limit

CPU

Logical
Address

Physical
Address

Yes: Error!

Dynamic Storage-Allocation Problem

• How to satisfy a request of size n from a list of free
holes
• First-fit: Allocate the first hole that is big enough

• Best-fit: Allocate the smallest hole that is big enough; must
search entire list, unless ordered by size
• Produces the smallest leftover hole

• Worst-fit: Allocate the largest hole; must also search entire list
• Produces the largest leftover hole

• Next-fit: Scans memory from the location of the last placement

• First-fit and best-fit better than worst-fit in terms of speed
and storage utilization

42

First-fit

43

0000 0000

New Process

1

2

5

8

1

4

3

New Process

Best-fit

44

0000 0000

New Process

1

2

5

8

1

4

3

New Process

Worst-fit

45

0000 0000

New Process

1

2

5

8

1

4

3

New Process

Next-fit

46

0000 0000

New Process 2

1

2

5

8

1

4

2

New Process

New Process 2

Exercise

• Given memory partitions, which are 100K, 450K, 250K,
300K and 600K

• There are four processes in order: 212K, 417K, 112K,
and 426K.

• In order to place processes in the memory, there are
three algorithms: the first-fit algorithm, the best-fit
algorithm, and the next-fit algorithm. Of the three
algorithms, which one makes the best use of memory
space?

47

Fragmentation

48

0000 0000

Process 1

Process 2

Process 1

Process 2

Process 3

Process 3

Process 4 Process 4

Process 5

Process 5

Process 6
Process 6

Process 7

Fragmentation

• External Fragmentation – total memory space exists
to satisfy a request, but it is not contiguous
• External fragmentation is the phenomenon in which free

storage becomes divided into many small pieces over time.

• The term "external" refers to the fact that the unusable
storage is outside the allocated regions.

49

Fragmentation

• Consider a multiple-partition allocation scheme with a
hole of 18,464 bytes. Suppose that the next process
requested 18,462 bytes. If we allocate exactly the
requested block, we are left with a hole of 2 bytes.

• The overhead to keep track of this hole will be
substantially larger than the hole itself.

50

Fragmentation

• The general approach to avoiding this problem is to
break the physical memory into fixed-sized blocks and
allocate memory in units based on block size.

• With this approach, the memory allocated to a process
may be slightly larger than the requested memory.

• The difference between these two approaches is
internal fragmentation - memory that is internal to a
partition but is not being used.

51

Fragmentation

• Reduce external fragmentation by compaction
• Shuffle memory contents to place all free memory together

in one large block
• However, it is somewhat expensive.

• Compaction is possible only if relocation is dynamic, and is
done at execution time

52

Compaction

53

0000 0000

Process 2
Process 2

Process 4 Process 4

Process 5

Process 5

Process 6
Process 6

Process 7
Process 7

Contiguous Memory Allocation

• Base and Limit Pros: Simple, fast

• Fragmentation problem
• Not every process is in the same size

• Over time, memory space becomes fragmented

• Missing support for sparse address space
• Would like to have multiple chunks/program

• E.g.: Code, Data, Stack

• Hard to do inter-process sharing
• Want to share code segments when possible

• Want to share memory between processes
54

Contiguous Memory Allocation

• Is there a scheme without External Fragmentation?
• Of course!

55

Paging

56

Paging

57

0000 0000

Process 2
Process 2

Process 4 Process 4

Process 5

Process 5

Process 6
Process 6

Process 7
Piece

Size?

Paging

• Physical address space of a process can be noncontiguous;
process is allocated physical memory whenever the latter
is available

• Divide physical memory into fixed-sized blocks called
frames
• Size is power of 2

• Typically have small pages (1K-16K)

• Divide logical memory into blocks of same size called
pages

58

How to allocate?

• 32-byte memory and 4-byte pages

i
j
k
l

e
f
g
h
a
b
c
d

m
n
o
p

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p

Page0

Page1

Page2

Page3

Logical Memory Physical Memory

59

How to allocate?

• 32-byte memory and 4-byte pages

i
j
k
l

e
f
g
h
a
b
c
d

0b 00000

m
n
o
p

0b 00100

0b 01000

0b 01100

0b 10000

0b 10100

0b 11000

0b 11100

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p

Page0

Page1

Page2

Page3

Logical Memory Physical Memory

60

How to allocate?

• 32-byte memory and 4-byte pages

i
j
k
l

e
f
g
h
a
b
c
d

0b 00000

m
n
o
p

0b 00100

0b 01000

0b 01100

0b 10000

0b 10100

0b 11000

0b 11100

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p

Page0

Page1

Page2

Page3

Page 2

Page 1

Page 0

Page 3

0 3

1 2

2 0

3 6

Frame 0

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 6

Frame 7

Logical Memory

Page Table

Physical Memory

61

Address Translation Scheme

• Address generated by CPU is divided into:
• Page number (p) – used as an index into a page table which

contains base address of each page in physical memory

• Page offset (d) – combined with base address to define the
physical memory address that is sent to the memory unit

• For given logical address space 2m and page size 2n

62

p

page number page offset

m - n n

d

How to allocate?

• 32-byte memory and 4-byte pages

63

i
j
k
l

e
f
g
h
a
b
c
d

0b 00000

m
n
o
p

0b 00100

0b 01000

0b 01100

0b 10000

0b 10100

0b 11000

0b 11100

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p

Page0

Page1

Page2

Page3

Logical Memory

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0 3

1 2

2 0

3 6

Physical Memory

Paging Hardware

64

p dCPU

Logical
Address

p

f d

Physical
Address f

Memory
Page Table

Paging

• Keep track of all free frames

• To run a program of size n pages, need to find n free
frames and load program

• Set up a page table to translate logical to physical
addresses

• No external fragmentation

• May has internal fragmentation

65

i
j

e
f
g
h

c
d

m
n

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p

Page0

Page1

Page2

Page3

Page 2

Page 1

Page 0

Page 3

3

2

1

0

Frame 0

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 6

Frame 7

Physical
Memory

Logical
Memory

Page
Table

Free Frames

3 2 0 6

6

0

2

3

7

66

Implementation of Page Table

• The page table is contiguous in main memory

• Page-table base register (PTBR) points to the page
table

• Page-table length register (PRLR) indicates size of the
page table

67

Implementation of Page Table

• In this scheme every data/instruction access requires
two memory accesses.
• One for the page table, and

• One for the data/instruction.

• The two memory access problem can be solved by the
use of a special fast-lookup hardware cache called
associative memory or translation look-aside buffers
(TLBs)

68

Paging Hardware With TLB

69

p dCPU

Logical
Address

f

f d

physical
Address

Memory
Page Table

p f

TLB

p

TLB hit

TLB
miss

Paging Hardware With TLB

• If the page number is not in the TLB (known as a TLB
miss), a memory reference to the page table must be
made. When the frame number is obtained, we can use
it to access memory.

• In addition, we add the page number and frame number
to the TLB, so that they will be found quickly on the
next reference.

• If the TLB is already full of entries, the operating
system must select one for replacement.

70

Paging Hardware With TLB

71

CPU Physical
Memory

TLB

Translate
(MMU)

No

Logical
Address

Physical
Address

Yes
Cached?

Why Does TLB Help? Locality!

72

Address Space
0 2n - 1

Probability
of reference

Effective Access Time

• Associative Lookup =  time unit

• Assume memory cycle time is 1 time unit

• Hit ratio – percentage of times that a page number is
found in the associative registers; ratio related to
number of associative registers
• Hit ratio = 

• Effective Access Time (EAT)

EAT = (1 + )  + (2 + )(1 – )

 = 2 +  – 

73

Effective Access Time

74

=0.1  EAT

5% 2.05

EAT =

2 +  – 

10% 2

50% 1.6

80% 1.3

? 1.12

Paging Hardware With TLB

• Needs to be really fast
• Critical path of memory access

• Needs to have very few conflicts!
• With TLB, the Miss Time extremely high!

• How big does TLB actually have to be?
• Usually small: 128-512 entries

75

Memory Protection

• User cannot modify the page table mapping

• Memory protection implemented by associating
protection bit with each frame

• Valid-invalid bit attached to each entry in the page table:
• “valid” indicates that the associated page is in the process’

logical address space, and is thus a legal page

• “invalid” indicates that the page is not in the process’ logical
address space

76

Paging

• Valid (v) or Invalid (i) Bit In A Page Table

77

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5

0 2 v

1 3 v

2 4 v

3 7 v

4 8 v

5 9 v

6 0 i

7 0 i

0

1

2 Page 0

3 Page 1

4 Page 2

5

6

7 Page 3

8 Page 4

9 Page 5

…

…

Frame
number

Valid-invalid
bit

Page 6

• Shared code
• One copy of read-only code shared among processes (i.e.,

text editors).

• Private code and data
• Each process keeps a separate copy of the code and data
• The pages for the private code and data can appear

anywhere in the logical address space

78

Shared Pages

Shared Pages Example

79

Ed 1

Ed 2

Ed 3

Data 1

Ed 1

Ed 2

Ed 3

Data 2

Ed 1

Ed 2

Ed 3

Data 3

P1

P2

P3

Page
table 1

Page
table 2

Page
table 3

3

4

6

1

3

4

6

7

3

4

6

2

0

1 Data 1

2 Data 3

3 Ed 1

4 Ed 2

5

6 Ed 3

7 Data 2

8

9

10

11

Structure of the Page Table

80

Structure of the Page Table

• A logical address (on 32-bit machine with 4K page size)
is divided into:
• a page number consisting of 20 bits

• a page offset consisting of 12 bits

• How many pages?
• 2^32/2^12=2^20

• What is the size of the page table, if each item of the
page table takes 4B?
• 4MB

81

Structure of the Page Table

• Hierarchical Page Tables

• Hashed Page Tables

• Inverted Page Tables

82

Hierarchical Page Tables

• Break up the logical address space into multiple page
tables

• A simple technique is a two-level page table

83

Two-Level Page-Table Scheme

84

Memory
Page
Table

Outer
Page
Table

Two-Level Paging Example

• A logical address (on 32-bit machine with 4K page) is divided into:
• a page number consisting of 20 bits
• a page offset consisting of 12 bits

• Since the page table is paged, the page number is further divided
into:
• a 10-bit page number
• a 10-bit page offset

• Thus, a logical address is as follows:

where p1 is an index into the outer page table, and p2 is the displacement
within the page of the outer page table 85

page number page offset

p1 p2 d

10 10 12

Address-Translation Scheme

86

Logical address

p1 p2 d

p1

p2

d

Outer
Page
Table

Page of
page table

Three-level Paging Scheme

87

Hierarchical Paging Analysis

• Pros:
• Easy memory allocation

• Easy sharing

• Cons:
• Page tables need to be contiguous

• Two (or more, if >2 levels) lookups per reference

88

Hashed Page Tables

• In common address spaces > 32 bits

• The logical page number is hashed into a page table
• This page table contains a chain of elements hashing to the

same location

• Logical page numbers are compared in this chain
searching for a match
• If a match is found, the corresponding physical frame is

extracted

89

Hashed Page Table

p dCPU

Logical
Address

H(p)

f d

physical
Address

f

MemoryHash Table

Hash
function

H()
…gq fp

90

Hashed Page Tables

• Size of page table is at least as large as amount of
logical memory allocated to processes

• Physical memory may be much less
• Much of process space may be out on disk or not in use

91

Inverted Page Table

• One entry for each real page of memory

• Entry consists of the logical address of the page
stored in that real memory location, with information
about the process that owns that page

• Decreases memory needed to store each page table,
but increases time needed to search the table when a
page reference occurs

92

Inverted Page Table

0 5 v

1 2 v

2 6 v

3 0 i

4 0 i

0 3 v

1 0 v

2 7 v

3 0 i

0 4 v

1 1 v

2 0 i

3 0 i

P1

P2

P3

0 P1 Page1

1 P2 Page1

2 P3 Page1

3 P1 Page0

4 P2 Page0

5 P3 Page0

6 P3 Page2

7 P1 Page2

Inverted Page Table
93

Inverted Page Table

p dCPU

pid

Logical
Address

f d

physical
Address f

Memory
Inverted Page Table

`

f

p

pid

94

Inverted Page Tables

• Systems that use inverted page tables have difficulty
implementing shared memory.

95

Segmentation

96

Segmentation

• Memory-management scheme that supports user view
of memory

• A program is a collection of segments. A segment is a
logical unit such as:

 main program,
 procedure,
 function,
 local variables, global variables,
 stack,
 ……

97

User’s View of a Program

98

Logical
address
 space

Stack

Symbol
Table

Main
program

Subroutine

sqrt

Logical View of Segmentation

99

user view
of memory

space

physical
memory
space

Stack

Symbol
Table

Main
program

Subroutine

sqrt

Stack

Symbol
Table

Main
program

Subroutine

sqrt

More Flexible Segmentation

• Logical View: multiple separate segments
• Typical: Code, Data, Stack
• Others: memory sharing, etc

• Each segment is given region of contiguous memory
• Has a base and limit
• Can reside anywhere in physical memory

100

user view
of memory

space

physical
memory
space

Stack

Symbol
Table

Main
program

Subroutine

sqrt

Stack

Symbol
Table

Main
program

Subroutine

sqrt

Logical
address
 space

Stack

Symbol
Table

Main
program

Subroutine

sqrt

Segmentation Architecture

• Logical address consists of a two tuple :

<segment-number, offset>,

• Segment table – maps two-dimensional physical addresses; each
table entry has:
• base – contains the starting physical address where the segments reside in

memory

• limit – specifies the length of the segment

• Segment-table base register (STBR) points to the segment table’s
location in memory

• Segment-table length register (STLR) indicates number of
segments used by a program;

segment number s is legal if s < STLR
101

Segmentation Architecture

102

user view
of memory

space

physical
memory
space

Stack

Symbol
Table

Main
program

Subroutine

sqrt

Stack

Symbol
Table

Main
program

Subroutine

sqrt

limit base

0 100 0

1 120 120

2 140 240

3 140 400

4 100 540

0

100

120

240

380
400

540

640

OffsetSeg
014 1315

Segmentation Hardware

103

baselimit

s dCPU
Logical
Address

< +

Memory

Segment Table

s

Trap: address error

Y
N

Segmentation Hardware With TLB

104

base limit

s lb

s dCPU

Logical
Address

<

+

Memory
Segment Table

TLB

s

TLB
hit

TLB
miss

Y

Shared Segments Example

105

physical
memory
space

data1

editor

data2
limit base

0 160 80

1 40 380

0

80

280

240

380
420

data 1

editor

data 2

editor

limit base

0 160 80

1 40 240

code sharing occurs at
segment level

• Protection
• With each entry in segment table associate:

• validation bit = 0 illegal segment

• read/write/execute privileges

106

Segmentation Architecture

Segmentation with Paging

• Divide each segment into blocks of same size.

107

Page numSeg num Offset

Segmentation with Paging

108Segment1 Segment2 Segment3

Segmentation with Paging

109

Page num
p

Seg num
s

Offset
d

f

p

Base of page table

s

+

f d

Physical
Address

Memory

……

Segmentation Paging

• Memory is a resource that must be shared
• Translation: Change Logical Addresses into Physical

Addresses

• Protection: Prevent unauthorized Sharing of resources

• Simple contiguous memory allocation
• Base+limit registers restrict memory accessible to user

• Can be used to translate as well

• Full translation of addresses through Memory
Management Unit (MMU)

110

Summary

Summary

• Page Tables
• Memory divided into fixed-sized chunks of memory
• Logical page number from logical address mapped through page table to physical

page number
• Offset of logical address same as physical address
• Large page tables can be placed into logical memory

• Multi-Level Tables
• Logical address mapped to series of tables
• Permit sparse population of address space

• Hashed page table
• Inverted page table
• Segment Mapping

• Each segment contains base and limit information
• Offset (rest of address) adjusted by adding base

111

Memory
Management

Two Views
of Memory

Contiguous
Allocation

Allocation
Algorithm

Address Mapping

Fragmen-
tation

Logical Addresses
vs. Physical Addresses

Segmentation

Principle

TLB

External
vs. Internal

Paging EAT

Page Table Structure

Address Mapping

Protection and Sharing

Principle

Address Mapping

Protection and Sharing
Segmentation
with Paging 112

Summary

Logical Addresses vs. Physical Addresses

Address

Mapping

Protection Sharing Fragmentation

External Internal

Contiguous

Allocation

Paging

Segmentation

Segmentation

with Paging

113

Homework

114

115

Homework

• Exercises
• EX-32 (Page 494):

• 9.13, 9.15

Thank you!

Q & A

	Slide 1: Main Memory
	Slide 2: Course Review
	Slide 3: What are the four requirements for Deadlock?
	Slide 4: What are the methods for handling deadlocks?
	Slide 5: How the Banker’s algorithm works? (safty)
	Slide 6: How the Banker’s algorithm works? (request)
	Slide 7: How to detect deadlocks? (detection algorithm)
	Slide 8: What to do when detect deadlocks?
	Slide 9: Main Memory
	Slide 10: Outline
	Slide 11: Background
	Slide 12: Recall
	Slide 13: Background
	Slide 14: Process in Memory
	Slide 15: User’s View of a Program
	Slide 16: Recall
	Slide 17: Computer System Organization
	Slide 18: Main memory
	Slide 19: Main memory
	Slide 20: Storage-Device Hierarchy
	Slide 21: Memory
	Slide 22: Memory Management
	Slide 23: Two Views of Memory
	Slide 24: Logical vs. Physical Address Space
	Slide 25: Address binding scheme: in compile time
	Slide 26: Address binding scheme: in compile time
	Slide 27: Address binding scheme: in load time
	Slide 28: Address binding scheme: in load time
	Slide 29: Dynamic Relocation
	Slide 30: Memory-Management Unit (MMU)
	Slide 31: Memory-Management Unit (MMU)
	Slide 32: Memory Management Requirement
	Slide 33: Contiguous Memory Allocation
	Slide 34: Fixed Partition
	Slide 35: Fixed Partition
	Slide 36: Dynamically Partition
	Slide 37: Dynamic Storage-Allocation Problem
	Slide 38: Contiguous Memory Allocation
	Slide 39: Base and Limit Registers
	Slide 40: Base and Limit Registers
	Slide 41: Base and Limit Registers
	Slide 42: Dynamic Storage-Allocation Problem
	Slide 43: First-fit
	Slide 44: Best-fit
	Slide 45: Worst-fit
	Slide 46: Next-fit
	Slide 47: Exercise
	Slide 48: Fragmentation
	Slide 49: Fragmentation
	Slide 50: Fragmentation
	Slide 51: Fragmentation
	Slide 52: Fragmentation
	Slide 53: Compaction
	Slide 54: Contiguous Memory Allocation
	Slide 55: Contiguous Memory Allocation
	Slide 56: Paging
	Slide 57: Paging
	Slide 58: Paging
	Slide 59: How to allocate?
	Slide 60: How to allocate?
	Slide 61: How to allocate?
	Slide 62: Address Translation Scheme
	Slide 63: How to allocate?
	Slide 64: Paging Hardware
	Slide 65: Paging
	Slide 66: Free Frames
	Slide 67: Implementation of Page Table
	Slide 68: Implementation of Page Table
	Slide 69: Paging Hardware With TLB
	Slide 70: Paging Hardware With TLB
	Slide 71: Paging Hardware With TLB
	Slide 72: Why Does TLB Help? Locality!
	Slide 73: Effective Access Time
	Slide 74: Effective Access Time
	Slide 75: Paging Hardware With TLB
	Slide 76: Memory Protection
	Slide 77: Paging
	Slide 78: Shared Pages
	Slide 79: Shared Pages Example
	Slide 80: Structure of the Page Table
	Slide 81: Structure of the Page Table
	Slide 82: Structure of the Page Table
	Slide 83: Hierarchical Page Tables
	Slide 84: Two-Level Page-Table Scheme
	Slide 85: Two-Level Paging Example
	Slide 86: Address-Translation Scheme
	Slide 87: Three-level Paging Scheme
	Slide 88: Hierarchical Paging Analysis
	Slide 89: Hashed Page Tables
	Slide 90: Hashed Page Table
	Slide 91: Hashed Page Tables
	Slide 92: Inverted Page Table
	Slide 93: Inverted Page Table
	Slide 94: Inverted Page Table
	Slide 95: Inverted Page Tables
	Slide 96: Segmentation
	Slide 97: Segmentation
	Slide 98: User’s View of a Program
	Slide 99: Logical View of Segmentation
	Slide 100: More Flexible Segmentation
	Slide 101: Segmentation Architecture
	Slide 102: Segmentation Architecture
	Slide 103: Segmentation Hardware
	Slide 104: Segmentation Hardware With TLB
	Slide 105: Shared Segments Example
	Slide 106: Segmentation Architecture
	Slide 107: Segmentation with Paging
	Slide 108: Segmentation with Paging
	Slide 109: Segmentation with Paging
	Slide 110: Summary
	Slide 111: Summary
	Slide 112
	Slide 113: Summary
	Slide 114: Homework
	Slide 115: Homework
	Slide 116: Thank you!

