推荐算法 用户考核 头像上传

Change-Id: Iaac96768d5238142f5ed445f5cc64ccedd239d0f
diff --git a/src/main/java/com/pt5/pthouduan/service/ExamService.java b/src/main/java/com/pt5/pthouduan/service/ExamService.java
new file mode 100644
index 0000000..93dbbcd
--- /dev/null
+++ b/src/main/java/com/pt5/pthouduan/service/ExamService.java
@@ -0,0 +1,103 @@
+package com.pt5.pthouduan.service;
+
+import com.pt5.pthouduan.entity.Invites;
+import com.pt5.pthouduan.entity.User;
+import com.pt5.pthouduan.entity.UserTrafficStat;
+import com.pt5.pthouduan.mapper.InvitesMapper;
+import com.pt5.pthouduan.mapper.UserMapper;
+import com.pt5.pthouduan.mapper.UserTrafficMapper;
+import org.springframework.beans.factory.annotation.Autowired;
+import org.springframework.stereotype.Service;
+
+import java.time.LocalDate;
+import java.util.ArrayList;
+import java.util.HashMap;
+import java.util.List;
+import java.util.Map;
+
+@Service
+public class ExamService {
+    @Autowired
+    private UserTrafficMapper userTrafficMapper;
+    @Autowired
+    private UserMapper userMapper;
+    //所有用户月度下载量考核
+    public Map<String, Object> MonthDownload(LocalDate startDate,LocalDate endDate){
+        Map<String, Object> result = new HashMap<>();
+        List<Map<String, Object>> users = userMapper.selectAllUsersBasicInfo();
+        for (Map<String, Object> user : users) {
+            // 获取 gradeId,这里转为数字
+            Object gradeIdObj = user.get("grade_id");
+            int gradeId = (gradeIdObj instanceof Number) ? ((Number) gradeIdObj).intValue() : 0;
+            UserTrafficStat userTrafficStat=userTrafficMapper.getUserTrafficStats((String) user.get("passkey"),startDate,endDate);
+            System.out.println(gradeId+" "+userTrafficStat.getTotalUploaded()+"  "+userTrafficStat.getTotalDownloaded());
+            // 根据 gradeId 的值审核下载量
+            if (gradeId == 1) {
+                if(userTrafficStat.getTotalDownloaded()<1073741824){
+                    if(userTrafficStat.getTotalUploaded()< 1073741824L *50)
+                        failure((String) user.get("username"),gradeId);
+                }
+            } else if (gradeId == 2) {
+                if(userTrafficStat.getTotalDownloaded()< 1073741824L *3){
+                    if(userTrafficStat.getTotalUploaded()< 1073741824L *50)
+                        failure((String) user.get("username"),gradeId);
+                }
+            } else if (gradeId == 3) {
+                if(userTrafficStat.getTotalDownloaded()< 1073741824L *5){
+                    if(userTrafficStat.getTotalUploaded()< 1073741824L *50)
+                        failure((String) user.get("username"),gradeId);
+                }
+            }
+        }
+        result.put("success", true);
+        result.put("message", "用户月度考核完毕");
+        return result;
+    }
+    //考核失败
+    void failure(String username,int gradeId){
+        System.out.println("failure"+username+gradeId);
+        if(gradeId == 1){
+            userMapper.deleteByUsername(username);
+        }else{
+            userMapper.updateGrade(username,gradeId-1);
+        }
+    }
+    //所有用户季度上传量考核
+    public Map<String, Object> QuarterUpload(LocalDate startDate,LocalDate endDate){
+        Map<String, Object> result = new HashMap<>();
+        List<Map<String, Object>> users = userMapper.selectAllUsersBasicInfo();
+        for (Map<String, Object> user : users) {
+            // 获取 gradeId,这里转为数字
+            Object gradeIdObj = user.get("grade_id");
+            int gradeId = (gradeIdObj instanceof Number) ? ((Number) gradeIdObj).intValue() : 0;
+            UserTrafficStat userTrafficStat=userTrafficMapper.getUserTrafficStats((String) user.get("passkey"),startDate,endDate);
+            // 根据 gradeId 的值审核上传
+            if (gradeId == 1) {
+                if(userTrafficStat.getTotalUploaded()< 1073741824L *50){
+                    failure((String) user.get("username"),gradeId);
+                }
+            } else if (gradeId == 2) {
+                if(userTrafficStat.getTotalUploaded()< 1073741824L*60){
+                    failure((String) user.get("username"),gradeId);
+                }
+            } else if (gradeId == 3) {
+                System.out.println("here");
+                if(userTrafficStat.getTotalUploaded()< 1073741824L*70){
+                    System.out.println("failure");
+                    failure((String) user.get("username"),gradeId);
+                }
+            }else if (gradeId == 4) {
+                if(userTrafficStat.getTotalUploaded()< 1073741824L*80){
+                    failure((String) user.get("username"),gradeId);
+                }
+            }else if (gradeId == 5) {
+                if(userTrafficStat.getTotalUploaded()< 1073741824L*100){
+                    failure((String) user.get("username"),gradeId);
+                }
+            }
+        }
+        result.put("success", true);
+        result.put("message", "用户季度考核完毕");
+        return result;
+    }
+}
\ No newline at end of file
diff --git a/src/main/java/com/pt5/pthouduan/service/RecommendService.java b/src/main/java/com/pt5/pthouduan/service/RecommendService.java
new file mode 100644
index 0000000..6f6f9a4
--- /dev/null
+++ b/src/main/java/com/pt5/pthouduan/service/RecommendService.java
@@ -0,0 +1,170 @@
+package com.pt5.pthouduan.service;
+
+import com.pt5.pthouduan.entity.Torrent;
+import com.pt5.pthouduan.entity.UserBehavior;
+import com.pt5.pthouduan.mapper.RecommendMapper;
+import org.springframework.beans.factory.annotation.Autowired;
+import org.springframework.stereotype.Service;
+
+import java.time.LocalDateTime;
+import java.time.temporal.ChronoUnit;
+import java.util.*;
+import java.util.stream.Collectors;
+
+
+@Service
+public class RecommendService {
+    @Autowired
+    private TorrentService torrentService;
+
+    @Autowired
+    private RecommendMapper recommendMapper;
+    //收集用户行为数据
+    public void recordUserBehavior(Long userId, Long torrentId, String behaviorType) {
+        UserBehavior behavior = new UserBehavior();
+        behavior.setUserId(userId);
+        behavior.setTorrentId(torrentId);
+        behavior.setBehaviorType(behaviorType);
+        behavior.setWeight(getBehaviorWeight(behaviorType));
+        behavior.setTimestamp(LocalDateTime.now());
+
+        recommendMapper.insertUserBehavior(behavior);
+    }
+    //对用户行为数据进行定期清洗 维护内存空间
+    private void cleanOldBehaviors() {
+        recommendMapper.deleteOldBehaviorsForAllUsers(30);
+    }
+
+    //设定不同用户行为的偏好权重(注意这里权重如果修改 那么BehaviorType同样需要修改 它在entity中)
+    private int getBehaviorWeight(String behaviorType) {
+        return switch (behaviorType) {
+            case "DOWNLOAD" -> 3;
+            case "FAVORITE" -> 5;
+            case "SEED" -> 4;
+            case "VIEW" -> 1;
+            case "COMMENT" -> 2;
+            default -> 1;
+        };
+    }
+
+
+
+    public List<Torrent> recommendForUser(Long userId) {//limit为资源的最大数量限制
+        // 检查用户是否有足够的行为数据
+        double totalWeight=recommendMapper.sumWeightsByUserId(userId);
+
+        if (totalWeight>50) {//行为数据足够
+            // 70% 偏好资源,15% 热门资源,15% 最新资源
+            return getPersonalizedRecommendation(userId);
+        } else {//行为数据不足
+            // 50% 热门资源,50% 最新资源
+            return getDefaultRecommendation();
+        }
+    }
+
+    //偏好资源推荐
+    private List<Torrent> getPersonalizedRecommendation(Long userId) {
+
+        // 获取偏好资源
+
+        List<Map<String, Object>> categories = recommendMapper.findFavoriteCategories(userId);//获取喜爱的类型及其权重
+        categories = categories.stream()
+                .sorted((a, b) -> Integer.compare(
+                        ((Number)b.get("totalWeight")).intValue(),
+                        ((Number)a.get("totalWeight")).intValue()
+                ))
+                .limit(5)  // 只取前5种偏好类型
+                .toList();
+        List<List<Torrent>> allTorrents = categories.stream()
+                .map(category -> torrentService.getTorrentsByCategory((Integer) category.get("categoryId")))
+                .toList();
+        // 3. 均匀混合算法
+        List<Torrent> combinedList = new ArrayList<>();
+        if (!allTorrents.isEmpty()) {
+            int maxSize = allTorrents.stream()
+                    .mapToInt(List::size)
+                    .max()
+                    .orElse(0);
+
+            // 按权重计算每种类型每次应该添加的元素数量
+            int[] weights = categories.stream()
+                    .mapToInt(c -> ((Number)c.get("totalWeight")).intValue()) // 安全转换
+                    .toArray();
+            int totalWeight = Arrays.stream(weights).sum();
+
+            // 计算每种类型在每轮中应该添加的比例
+            double[] ratios = Arrays.stream(weights)
+                    .mapToDouble(w -> (double)w / totalWeight)
+                    .toArray();
+
+            // 均匀混合实现
+            for (int i = 0; i < maxSize; i++) {
+                for (int j = 0; j < allTorrents.size(); j++) {
+                    List<Torrent> current = allTorrents.get(j);
+                    if (i < current.size()) {
+                        // 根据权重比例决定是否添加当前元素
+                        if (Math.random() < ratios[j]) {
+                            combinedList.add(current.get(i));
+                        }
+                    }
+                }
+            }
+        }
+
+        // 常规推荐
+        List<Torrent> regular=getDefaultRecommendation();
+        //合并结果 把个性化推荐和普通推荐相结合7:3
+        List<Torrent> finalList = new ArrayList<>();
+        int combinedSize = combinedList.size();
+        int regularSize = regular.size();
+        int actualCombined = combinedSize;
+        int actualRegular =regularSize;
+        Iterator<Torrent> combinedIter = combinedList.iterator();
+        Iterator<Torrent> regularIter = regular.iterator();
+        while (actualCombined > 0 || actualRegular > 0) {
+            double ratio = 0.9;
+
+            if (Math.random() < ratio && actualCombined > 0) {
+                if (combinedIter.hasNext()) {
+                    finalList.add(combinedIter.next());
+                    actualCombined--;
+                }
+            } else if (actualRegular > 0) {
+                if (regularIter.hasNext()) {
+                    finalList.add(regularIter.next());
+                    actualRegular--;
+                }
+            }
+        }
+        while (regularIter.hasNext()) {
+            finalList.add(regularIter.next());
+        }
+        Set<Integer> seenIds = new HashSet<>();
+        List<Torrent> distinctList = finalList.stream()
+                .filter(torrent -> seenIds.add(torrent.getTorrentid().intValue())) // 首次出现时返回true
+                .collect(Collectors.toList());
+        return distinctList;
+    }
+    //无偏好推荐
+    private List<Torrent> getDefaultRecommendation() {
+        List<Torrent> torrents=torrentService.getAllTorrents();
+        torrents= torrents.stream()
+                .sorted((t1, t2) -> {
+                    // 时间衰减因子(新种子加分)
+                    long daysOld1 = ChronoUnit.DAYS.between(t1.getUploadTime(), LocalDateTime.now());
+                    long daysOld2 = ChronoUnit.DAYS.between(t2.getUploadTime(), LocalDateTime.now());
+
+                    // 综合分数 = downloadCount + (1 / (daysOld + 1)) * 系数
+                    double score1 = t1.getDownloadCount() + 10.0 / (daysOld1 + 1);
+                    double score2 = t2.getDownloadCount() + 10.0 / (daysOld2 + 1);
+
+                    return Double.compare(score2, score1);
+                })
+                .toList();
+        return torrents;
+    }
+
+//    public List<Map<String, Object>> test(){
+//        return recommendMapper.findFavoriteCategories(1L);
+//    }
+}