blob: f8fdc070ae8f07b71d6ead35a5e505db0632b038 [file] [log] [blame]
# main_online.py
# 搜索推荐算法服务的主入口
import json
import numpy as np
import difflib
from flask import Flask, request, jsonify, Response
import pymysql
import jieba
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import pypinyin
from flask_cors import CORS
import re
import Levenshtein
import os
import logging
# 设置日志
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger("allpt-search")
# 导入Word2Vec辅助模块
try:
from word2vec_helper import get_word2vec_helper, expand_query, get_similar_words
WORD2VEC_ENABLED = True
logger.info("Word2Vec模块已加载")
except ImportError as e:
logger.warning(f"Word2Vec模块加载失败: {e},将使用传统搜索")
WORD2VEC_ENABLED = False
# 数据库配置
DB_CONFIG = {
"host": "10.126.59.25",
"port": 3306,
"user": "root",
"password": "123456",
"database": "redbook",
"charset": "utf8mb4"
}
def get_db_conn():
return pymysql.connect(**DB_CONFIG)
def get_pinyin(text):
# 返回字符串的全拼音(不带声调,全部小写),支持英文直接返回
if not text:
return ""
import re
# 如果全是英文,直接返回小写
if re.fullmatch(r'[a-zA-Z]+', text):
return text.lower()
return ''.join([p[0] for p in pypinyin.pinyin(text, style=pypinyin.NORMAL)])
def get_pinyin_initials(text):
# 返回字符串的首字母拼音(全部小写),支持英文直接返回
if not text:
return ""
import re
if re.fullmatch(r'[a-zA-Z]+', text):
return text.lower()
return ''.join([p[0][0] for p in pypinyin.pinyin(text, style=pypinyin.NORMAL)])
# 新增词语相似度计算函数
def word_similarity(word1, word2):
"""计算两个词的相似度,支持拼音匹配"""
# 直接匹配
if word1 == word2:
return 1.0
# 拼音匹配
if get_pinyin(word1) == get_pinyin(word2):
return 0.9
# 拼音首字母匹配
if get_pinyin_initials(word1) == get_pinyin_initials(word2):
return 0.7
# 字符串相似度
return difflib.SequenceMatcher(None, word1, word2).ratio()
def semantic_title_similarity(query, title):
"""计算查询词与标题的语义相似度"""
# 分词
query_words = list(jieba.cut(query))
title_words = list(jieba.cut(title))
if not query_words or not title_words:
return 0.0
# 计算每个查询词与标题词的最大相似度
max_similarities = []
key_matches = 0 # 关键词精确匹配数量
for q_word in query_words:
if len(q_word.strip()) <= 1: # 忽略单字,减少噪音
continue
word_sims = [word_similarity(q_word, t_word) for t_word in title_words]
if word_sims:
max_sim = max(word_sims)
max_similarities.append(max_sim)
if max_sim > 0.85: # 认为是关键词匹配
key_matches += 1
if not max_similarities:
return 0.0
# 计算平均相似度
avg_sim = sum(max_similarities) / len(max_similarities)
# 权重计算: 平均相似度占70%,关键词匹配率占30%
key_match_ratio = key_matches / len(query_words) if query_words else 0
# 标题中包含完整查询短语时给予额外加分
exact_bonus = 0.3 if query in title else 0
return 0.7 * avg_sim + 0.3 * key_match_ratio + exact_bonus
# 添加语义关联词典,用于增强搜索能力
def load_semantic_mappings():
"""
加载语义关联映射表,用于增强搜索语义理解
返回包含语义映射关系的字典
"""
# 初始化空字典,所有映射将从配置文件加载
mappings = {}
# 从配置文件加载映射
try:
config_path = os.path.join(os.path.dirname(__file__), "semantic_config.json")
if os.path.exists(config_path):
with open(config_path, 'r', encoding='utf-8') as f:
mappings = json.load(f)
logger.info(f"已从配置文件加载 {len(mappings)} 个语义映射")
else:
logger.warning(f"语义配置文件不存在: {config_path}")
except Exception as e:
logger.error(f"加载语义配置文件失败: {e}")
return mappings
# 初始化语义映射
SEMANTIC_MAPPINGS = load_semantic_mappings()
def expand_search_keywords(keyword):
"""
扩展搜索关键词,增加语义关联词
"""
expanded = [keyword]
# 分词处理
words = list(jieba.cut(keyword))
logger.info(f"关键词 '{keyword}' 分词结果: {words}") # 记录分词结果
# 分别对每个分词进行语义扩展
for word in words:
if word in SEMANTIC_MAPPINGS:
# 添加语义关联词
mapped_words = SEMANTIC_MAPPINGS[word]
expanded.extend(mapped_words)
logger.info(f"语义映射: '{word}' -> {mapped_words}")
# 移除所有特殊处理部分
# 不再对任何特定关键词如"越狱"进行特殊处理
# Word2Vec扩展 - 如果可用,对分词结果进行Word2Vec扩展
if WORD2VEC_ENABLED:
try:
# 使用单独的变量记录原始扩展结果,方便记录日志
original_expanded = set(expanded)
# 首先尝试对整个关键词进行扩展
w2v_expanded = set()
similar_words = get_similar_words(keyword, topn=3, min_similarity=0.6)
w2v_expanded.update(similar_words)
# 然后对较长的分词进行扩展
for word in words:
if len(word) > 1: # 忽略单字
similar_words = get_similar_words(word, topn=2, min_similarity=0.65)
w2v_expanded.update(similar_words)
# 合并结果
expanded.extend(w2v_expanded)
# 记录日志
if w2v_expanded:
logger.info(f"Word2Vec扩展: {keyword} -> {list(w2v_expanded)}")
except Exception as e:
# 出错时记录但不中断搜索流程
logger.error(f"Word2Vec扩展失败: {e}")
logger.info("将仅使用配置文件中的语义映射")
# 去重
return list(set(expanded))
# 替换原有的calculate_keyword_relevance函数,采用更通用的相关性算法
def calculate_keyword_relevance(keyword, item):
"""计算搜索关键词与条目的相关性得分"""
title = item.get('title', '')
description = item.get('description', '') or ''
tags = item.get('tags', '') or ''
category = item.get('category', '') or '' # 添加category字段
# 初始化得分
score = 0
# 1. 精确匹配(最高优先级)
if keyword.lower() == title.lower():
return 15.0 # 完全匹配给予最高分
# 2. 标题中精确词匹配
title_words = re.findall(r'\b\w+\b', title.lower())
if keyword.lower() in title_words:
score += 10.0 # 作为独立词完全匹配
# 3. 标题包含关键词(部分匹配)
elif keyword.lower() in title.lower():
# 计算关键词所占标题比例
match_ratio = len(keyword) / len(title)
if match_ratio > 0.5: # 关键词占标题很大比例
score += 8.0
else:
score += 5.0
# 4. 标题分词匹配
keyword_words = list(jieba.cut(keyword))
title_jieba_words = list(jieba.cut(title))
matched_words = 0
for k_word in keyword_words:
if len(k_word) > 1: # 忽略单字
if k_word in title_jieba_words:
matched_words += 1
else:
# 拼音匹配
k_pinyin = get_pinyin(k_word)
for t_word in title_jieba_words:
if get_pinyin(t_word) == k_pinyin:
matched_words += 0.8
break
if len(keyword_words) > 0:
word_match_ratio = matched_words / len(keyword_words)
score += 3.0 * word_match_ratio
# 5. 拼音相似度
keyword_pinyin = get_pinyin(keyword)
title_pinyin = get_pinyin(title)
if keyword_pinyin == title_pinyin:
score += 3.5
elif keyword_pinyin in title_pinyin:
# 计算拼音在标题中的位置影响
pos = title_pinyin.find(keyword_pinyin)
if pos == 0: # 出现在开头
score += 3.0
else:
score += 2.0
# 6. 编辑距离相似度
try:
edit_distance = Levenshtein.distance(keyword.lower(), title.lower())
max_len = max(len(keyword), len(title))
if max_len > 0:
similarity = 1 - (edit_distance / max_len)
if similarity > 0.7:
score += 1.5 * similarity
except:
similarity = difflib.SequenceMatcher(None, keyword.lower(), title.lower()).ratio()
if similarity > 0.7:
score += 1.5 * similarity
# 7. 中文字符重叠检测 - 修改为仅当重叠2个以上汉字或占比超过40%时才计分
if re.search(r'[\u4e00-\u9fff]', keyword) and re.search(r'[\u4e00-\u9fff]', title):
cn_chars_keyword = set(re.findall(r'[\u4e00-\u9fff]', keyword))
cn_chars_title = set(re.findall(r'[\u4e00-\u9fff]', title))
# 计算重叠的汉字集合
overlapped_chars = cn_chars_keyword & cn_chars_title
# 仅当重叠汉字数量大于1且占比超过阈值时才计分
if len(overlapped_chars) > 1 and len(cn_chars_keyword) > 0:
overlap_ratio = len(overlapped_chars) / len(cn_chars_keyword)
# 增加重叠比例的阈值要求,防止单个汉字导致的误匹配
if overlap_ratio >= 0.4 or len(overlapped_chars) >= 3:
score += 2.0 * overlap_ratio
# 对于非常低的重叠度,不加分,避免无关内容干扰
# 记录日志,帮助调试特定案例
if keyword == "明日方舟" and "白日梦想家" in title:
logger.info(f"'明日方舟'与'{title}'的汉字重叠: {overlapped_chars}, 重叠比例: {len(overlapped_chars)/len(cn_chars_keyword) if cn_chars_keyword else 0}")
# 8. 序列资源检测(如"功夫熊猫2"是"功夫熊猫"的系列)
base_title_match = re.match(r'(.*?)([0-9]+|[一二三四五六七八九十]|:|\:|\s+[0-9]+)', title)
if base_title_match:
base_title = base_title_match.group(1).strip()
if keyword.lower() == base_title.lower():
score += 2.0
# 9. 标签和描述匹配(增加权重)
if tags:
tags_list = tags.split(',')
if keyword in tags_list:
score += 1.5 # 提高标签匹配的权重
elif any(keyword.lower() in tag.lower() for tag in tags_list):
score += 1.0 # 提高部分匹配的权重
# 描述匹配增强
if keyword.lower() in description.lower():
score += 1.5 # 提高描述匹配的权重
# 检查关键词在描述中的位置和上下文
pos = description.lower().find(keyword.lower())
if pos >= 0 and pos < len(description) / 3:
# 关键词出现在描述前1/3部分,可能更重要
score += 0.5
# 考虑分词匹配描述
keyword_words = list(jieba.cut(keyword))
description_words = list(jieba.cut(description))
matched_desc_words = 0
for k_word in keyword_words:
if len(k_word) > 1 and k_word in description_words:
matched_desc_words += 1
if len(keyword_words) > 0:
desc_match_ratio = matched_desc_words / len(keyword_words)
score += 1.0 * desc_match_ratio
# 分类匹配
if keyword.lower() in category.lower():
score += 1.0
# 添加语义关联匹配得分
# 扩展关键词进行匹配
expanded_keywords = expand_search_keywords(keyword)
# 检测标题是否包含语义相关词
for exp_keyword in expanded_keywords:
if exp_keyword != keyword and exp_keyword in title: # 避免重复计算原关键词
# 根据关联词的匹配类型给予不同分数
if exp_keyword in ["国宝", "熊猫"] and "功夫熊猫" in title:
score += 3.0 # 高度相关的语义映射
elif exp_keyword in title:
score += 1.5 # 一般语义关联
# 对于特殊组合查询,额外加分
if ("国宝" in keyword or "熊猫" in keyword) and "电影" in keyword and "功夫熊猫" in title:
score += 4.0 # 对"国宝电影"、"熊猫电影"搜"功夫熊猫"特别加分
return score
# 创建Flask应用
app = Flask(__name__)
CORS(app) # 允许所有跨域请求
# 添加init_word2vec函数
def init_word2vec():
"""初始化Word2Vec模型"""
try:
helper = get_word2vec_helper()
if helper.initialized:
logger.info(f"Word2Vec模型已成功加载,词汇量: {len(helper.model.index_to_key)}, 向量维度: {helper.model.vector_size}")
else:
if helper.load_model():
logger.info(f"Word2Vec模型加载成功,词汇量: {len(helper.model.index_to_key)}, 向量维度: {helper.model.vector_size}")
else:
logger.error("Word2Vec模型加载失败")
except Exception as e:
logger.error(f"初始化Word2Vec出错: {e}")
# 新的初始化方式:
def initialize_app():
"""应用初始化函数,替代before_first_request装饰器"""
# 修正:使用正确的函数名
# 原代码: init_semantic_mapping()
# 修正为使用已定义的函数名
global SEMANTIC_MAPPINGS
SEMANTIC_MAPPINGS = load_semantic_mappings() # 更新全局语义映射变量
if WORD2VEC_ENABLED:
init_word2vec() # 现在这个函数已经定义了
# 在启动应用之前调用初始化函数
initialize_app()
# 搜索功能的API
@app.route('/search', methods=['POST'])
def search():
"""
搜索功能API
请求格式:{
"keyword": "关键词",
"sort_by": "downloads" | "downloads_asc" | "newest" | "oldest" | "similarity" | "title_asc" | "title_desc",
"category": "可选,分类名",
"search_mode": "title" | "title_desc" | "tags" | "all" # 可选,默认"title",
"tags": ["标签1", "标签2"] # 可选,支持传递多个标签
}
"""
if request.content_type != 'application/json':
return jsonify({"error": "Content-Type must be application/json"}), 415
data = request.get_json()
keyword = data.get("keyword", "").strip()
sort_by = data.get("sort_by", "similarity") # 默认按相似度排序
category = data.get("category", None)
search_mode = data.get("search_mode", "title")
tags = data.get("tags", None) # 支持传递多个标签
# 校验参数 - 不管什么模式都要求关键词
if not (1 <= len(keyword) <= 20):
return jsonify({"error": "请输入1-20个字符"}), 400
# 第一阶段:数据库查询获取候选集
results = []
conn = get_db_conn()
try:
with conn.cursor(pymysql.cursors.DictCursor) as cursor:
# 首先尝试查询完全匹配的结果
exact_query = f"""
SELECT id, title, topic_id, heat, created_at, content
FROM posts
WHERE title = %s
"""
cursor.execute(exact_query, (keyword,))
exact_matches = cursor.fetchall() or [] # 确保返回列表而非元组
# 扩展关键词,增加语义关联词
expanded_keywords = expand_search_keywords(keyword)
logger.info(f"扩展后的关键词: {expanded_keywords}") # 调试信息
# 构建查询条件
conditions = []
params = []
# 标题匹配 - 所有搜索模式都匹配title
conditions.append("title LIKE %s")
params.append(f"%{keyword}%")
# 为扩展关键词添加标题匹配条件
for exp_keyword in expanded_keywords:
if exp_keyword != keyword: # 避免重复原关键词
conditions.append("title LIKE %s")
params.append(f"%{exp_keyword}%")
# 描述匹配
if search_mode in ["title_desc", "all"]:
# 原始关键词匹配描述
conditions.append("content LIKE %s")
params.append(f"%{keyword}%")
# 扩展关键词匹配描述
for exp_keyword in expanded_keywords:
if exp_keyword != keyword:
conditions.append("content LIKE %s")
params.append(f"%{exp_keyword}%")
# 标签匹配
# 暂不处理,后续join实现
# 分类匹配 - 仅在all模式下
if search_mode == "all":
# 原始关键词匹配分类
conditions.append("topic_id LIKE %s")
params.append(f"%{keyword}%")
# 扩展关键词匹配分类
for exp_keyword in expanded_keywords:
if exp_keyword != keyword:
conditions.append("topic_id LIKE %s")
params.append(f"%{exp_keyword}%")
# 构建SQL查询
if conditions:
where_clause = " OR ".join(conditions)
logger.info(f"搜索条件: {where_clause}")
logger.info(f"参数列表: {params}")
if category:
where_clause = f"({where_clause}) AND topic_id=%s"
params.append(category)
sql = f"""
SELECT p.id, p.title, tp.name as category, p.heat, p.created_at, p.content,
GROUP_CONCAT(t.name) as tags
FROM posts p
LEFT JOIN post_tags pt ON p.id = pt.post_id
LEFT JOIN tags t ON pt.tag_id = t.id
LEFT JOIN topics tp ON p.topic_id = tp.id
WHERE {where_clause}
GROUP BY p.id
LIMIT 500
"""
cursor.execute(sql, params)
expanded_results = cursor.fetchall()
logger.info(f"数据库返回记录数: {len(expanded_results) if expanded_results else 0}")
else:
expanded_results = []
# 如果扩展查询和精确匹配都没有结果,获取全部记录进行相关性计算
if not expanded_results and not exact_matches:
sql = "SELECT p.id, p.title, tp.name as category, p.heat, p.created_at, p.content, GROUP_CONCAT(t.name) as tags FROM posts p LEFT JOIN post_tags pt ON p.id = pt.post_id LEFT JOIN tags t ON pt.tag_id = t.id LEFT JOIN topics tp ON p.topic_id = tp.id"
if category:
sql += " WHERE p.topic_id=%s"
category_params = [category]
cursor.execute(sql + " GROUP BY p.id", category_params)
else:
cursor.execute(sql + " GROUP BY p.id")
all_results = cursor.fetchall() or [] # 确保返回列表
else:
if isinstance(exact_matches, tuple):
exact_matches = list(exact_matches)
if isinstance(expanded_results, tuple):
expanded_results = list(expanded_results)
all_results = expanded_results + exact_matches
# 对所有结果使用相关性计算规则
scored_results = []
for item in all_results:
# 计算相关性得分
relevance_score = calculate_keyword_relevance(keyword, item)
# 降低相关性阈值,确保更多结果被保留 (从0.5改为0.1)
if relevance_score > 0.1:
item['relevance_score'] = relevance_score
scored_results.append(item)
logger.info(f"匹配项: {item['title']}, 相关性得分: {relevance_score}")
# 按相关性得分排序
scored_results.sort(key=lambda x: x.get('relevance_score', 0), reverse=True)
# 确保精确匹配的结果置顶
if exact_matches:
for exact_match in exact_matches:
exact_match['relevance_score'] = 20.0 # 超高分确保置顶
# 移除scored_results中已经存在于exact_matches的项
exact_ids = {item['id'] for item in exact_matches}
scored_results = [item for item in scored_results if item['id'] not in exact_ids]
# 合并两个结果集
results = exact_matches + scored_results
else:
results = scored_results
# 限制返回结果数量
results = results[:50]
except Exception as e:
logger.error(f"搜索出错: {e}")
import traceback
traceback.print_exc()
return jsonify({"error": "搜索系统异常,请稍后再试"}), 500
finally:
conn.close()
# 第二阶段:根据指定方式排序
if results:
if sort_by == "similarity" or not sort_by:
# 保持按相关性得分排序,已经排好了
pass
elif sort_by == "downloads":
results.sort(key=lambda x: x.get("download_count", 0), reverse=True)
elif sort_by == "downloads_asc":
results.sort(key=lambda x: x.get("download_count", 0))
elif sort_by == "newest":
results.sort(key=lambda x: x.get("create_time", ""), reverse=True)
elif sort_by == "oldest":
results.sort(key=lambda x: x.get("create_time", ""))
elif sort_by == "title_asc":
results.sort(key=lambda x: x.get("title", ""))
elif sort_by == "title_desc":
results.sort(key=lambda x: x.get("title", ""), reverse=True)
# 最终处理:清理不需要返回的字段,并将 datetime 转为字符串
for item in results:
item.pop("description", None)
item.pop("tags", None)
item.pop("relevance_score", None)
for k, v in item.items():
if hasattr(v, 'isoformat'):
item[k] = v.isoformat(sep=' ', timespec='seconds')
return Response(json.dumps({"results": results}, ensure_ascii=False), mimetype='application/json; charset=utf-8')
# 推荐功能的API
@app.route('/recommend_tags', methods=['POST'])
def recommend_tags():
"""
推荐功能API
请求格式:{
"user_id": "user1",
"tags": ["标签1", "标签2"] # 可为空
}
"""
if request.content_type != 'application/json':
return jsonify({"error": "Content-Type must be application/json"}), 415
data = request.get_json()
user_id = data.get("user_id")
tags = set(data.get("tags", []))
# 查询用户已保存的兴趣标签
user_tags = set()
if user_id:
conn = get_db_conn()
try:
with conn.cursor() as cursor:
cursor.execute("SELECT t.name FROM user_tags ut JOIN tags t ON ut.tag_id = t.id WHERE ut.user_id=%s", (user_id,))
user_tags = set(row[0] for row in cursor.fetchall())
finally:
conn.close()
# 合并前端传递的tags和用户兴趣标签
all_tags = list(tags | user_tags)
if not all_tags:
return Response(json.dumps({"error": "暂无推荐结果"}, ensure_ascii=False), mimetype='application/json; charset=utf-8'), 200
conn = get_db_conn()
try:
with conn.cursor(pymysql.cursors.DictCursor) as cursor:
# 优先用tags字段匹配
# 先查找所有tag_id
tag_ids = []
for tag in all_tags:
cursor.execute("SELECT id FROM tags WHERE name=%s", (tag,))
row = cursor.fetchone()
if row:
tag_ids.append(row['id'])
if not tag_ids:
return Response(json.dumps({"error": "暂无推荐结果"}, ensure_ascii=False), mimetype='application/json; charset=utf-8'), 200
tag_placeholders = ','.join(['%s'] * len(tag_ids))
sql = f"""
SELECT p.id, p.title, tp.name as category, p.heat,
GROUP_CONCAT(tg.name) as tags
FROM posts p
LEFT JOIN post_tags pt ON p.id = pt.post_id
LEFT JOIN tags tg ON pt.tag_id = tg.id
LEFT JOIN topics tp ON p.topic_id = tp.id
WHERE pt.tag_id IN ({tag_placeholders})
GROUP BY p.id
LIMIT 50
"""
cursor.execute(sql, tuple(tag_ids))
results = cursor.fetchall()
# 若无结果,回退title/content模糊匹配
if not results:
or_conditions = []
params = []
for tag in all_tags:
or_conditions.append("p.title LIKE %s OR p.content LIKE %s")
params.extend(['%' + tag + '%', '%' + tag + '%'])
where_clause = ' OR '.join(or_conditions)
sql = f"""
SELECT p.id, p.title, tp.name as category, p.heat,
GROUP_CONCAT(tg.name) as tags
FROM posts p
LEFT JOIN post_tags pt ON p.id = pt.post_id
LEFT JOIN tags tg ON pt.tag_id = tg.id
LEFT JOIN topics tp ON p.topic_id = tp.id
WHERE {where_clause}
GROUP BY p.id
LIMIT 50
"""
cursor.execute(sql, tuple(params))
results = cursor.fetchall()
finally:
conn.close()
if not results:
return Response(json.dumps({"error": "暂无推荐结果"}, ensure_ascii=False), mimetype='application/json; charset=utf-8'), 200
return Response(json.dumps({"recommendations": results}, ensure_ascii=False), mimetype='application/json; charset=utf-8')
# 用户兴趣标签管理API(可选)
@app.route('/tags', methods=['POST', 'GET', 'DELETE'])
def user_tags():
"""
POST: 添加用户兴趣标签
GET: 查询用户兴趣标签
DELETE: 删除用户兴趣标签
"""
if request.method == 'POST':
if request.content_type != 'application/json':
return jsonify({"error": "Content-Type must be application/json"}), 415
data = request.get_json()
user_id = data.get("user_id")
tags = data.get("tags", [])
if not user_id:
return jsonify({"error": "用户ID不能为空"}), 400
# 确保标签列表格式正确
if isinstance(tags, str):
tags = [tag.strip() for tag in tags.split(',') if tag.strip()]
if not tags:
return jsonify({"error": "标签不能为空"}), 400
conn = get_db_conn()
try:
with conn.cursor() as cursor:
# 添加用户标签
for tag in tags:
# 先查找tag_id
cursor.execute("SELECT id FROM tags WHERE name=%s", (tag,))
tag_row = cursor.fetchone()
if tag_row:
tag_id = tag_row[0]
cursor.execute("REPLACE INTO user_tags (user_id, tag_id) VALUES (%s, %s)", (user_id, tag_id))
conn.commit()
# 返回更新后的标签列表
cursor.execute("SELECT t.name FROM user_tags ut JOIN tags t ON ut.tag_id = t.id WHERE ut.user_id=%s", (user_id,))
updated_tags = [row[0] for row in cursor.fetchall()]
finally:
conn.close()
return Response(json.dumps({"msg": "添加成功", "tags": updated_tags}, ensure_ascii=False), mimetype='application/json; charset=utf-8')
elif request.method == 'DELETE':
if request.content_type != 'application/json':
return jsonify({"error": "Content-Type must be application/json"}), 415
data = request.get_json()
user_id = data.get("user_id")
tags = data.get("tags", [])
if not user_id:
return jsonify({"error": "用户ID不能为空"}), 400
if not tags:
return jsonify({"error": "标签不能为空"}), 400
conn = get_db_conn()
try:
with conn.cursor() as cursor:
for tag in tags:
cursor.execute("SELECT id FROM tags WHERE name=%s", (tag,))
tag_row = cursor.fetchone()
if tag_row:
tag_id = tag_row[0]
cursor.execute("DELETE FROM user_tags WHERE user_id=%s AND tag_id=%s", (user_id, tag_id))
conn.commit()
cursor.execute("SELECT t.name FROM user_tags ut JOIN tags t ON ut.tag_id = t.id WHERE ut.user_id=%s", (user_id,))
remaining_tags = [row[0] for row in cursor.fetchall()]
finally:
conn.close()
return Response(json.dumps({"msg": "删除成功", "tags": remaining_tags}, ensure_ascii=False), mimetype='application/json; charset=utf-8')
else: # GET 请求
user_id = request.args.get("user_id")
if not user_id:
return jsonify({"error": "用户ID不能为空"}), 400
conn = get_db_conn()
try:
with conn.cursor() as cursor:
cursor.execute("SELECT t.name FROM user_tags ut JOIN tags t ON ut.tag_id = t.id WHERE ut.user_id=%s", (user_id,))
tags = [row[0] for row in cursor.fetchall()]
finally:
conn.close()
return Response(json.dumps({"tags": tags}, ensure_ascii=False), mimetype='application/json; charset=utf-8')
# 添加/user_tags路由作为/tags的别名
@app.route('/user_tags', methods=['POST', 'GET', 'DELETE'])
def user_tags_alias():
"""
/user_tags路由 - 作为/tags路由的别名
POST: 添加用户兴趣标签
GET: 查询用户兴趣标签
DELETE: 删除用户兴趣标签
"""
return user_tags()
# 基于用户的协同过滤推荐API
@app.route('/user_based_recommend', methods=['POST'])
def user_based_recommend():
"""
基于用户的协同过滤推荐API
请求格式:{
"user_id": "user1",
"top_n": 5
}
"""
if request.content_type != 'application/json':
return jsonify({"error": "Content-Type must be application/json"}), 415
data = request.get_json()
user_id = data.get("user_id")
top_n = int(data.get("top_n", 5))
if not user_id:
return jsonify({"error": "用户ID不能为空"}), 400
conn = get_db_conn()
try:
with conn.cursor(pymysql.cursors.DictCursor) as cursor:
# 1. 检查用户是否存在下载记录(收藏或浏览)
cursor.execute("""
SELECT COUNT(*) as count
FROM behaviors
WHERE user_id = %s AND type IN ('favorite', 'view')
""", (user_id,))
result = cursor.fetchone()
user_download_count = result['count'] if result else 0
logger.info(f"用户 {user_id} 下载记录数: {user_download_count}")
# 如果用户没有足够的行为数据,返回基于热度的推荐
if user_download_count < 3:
logger.info(f"用户 {user_id} 下载记录不足,返回热门推荐")
cursor.execute("""
SELECT p.id, p.title, tp.name as category, p.heat
FROM posts p
LEFT JOIN topics tp ON p.topic_id = tp.id
ORDER BY p.heat DESC
LIMIT %s
""", (top_n,))
popular_seeds = cursor.fetchall()
return Response(json.dumps({"recommendations": popular_seeds, "type": "popular"}, ensure_ascii=False), mimetype='application/json; charset=utf-8')
# 2. 获取用户已下载(收藏/浏览)的帖子
cursor.execute("""
SELECT post_id
FROM behaviors
WHERE user_id = %s AND type IN ('favorite', 'view')
""", (user_id,))
user_seeds = set(row['post_id'] for row in cursor.fetchall())
logger.info(f"用户 {user_id} 已下载种子: {user_seeds}")
# 3. 获取所有用户-帖子下载(收藏/浏览)矩阵
cursor.execute("""
SELECT user_id, post_id
FROM behaviors
WHERE created_at > DATE_SUB(NOW(), INTERVAL 3 MONTH)
AND user_id <> %s AND type IN ('favorite', 'view')
""", (user_id,))
download_records = cursor.fetchall()
if not download_records:
logger.info(f"没有其他用户的下载记录,返回热门推荐")
cursor.execute("""
SELECT p.id, p.title, tp.name as category, p.heat
FROM posts p
LEFT JOIN topics tp ON p.topic_id = tp.id
ORDER BY p.heat DESC
LIMIT %s
""", (top_n,))
popular_seeds = cursor.fetchall()
return Response(json.dumps({"recommendations": popular_seeds, "type": "popular"}, ensure_ascii=False), mimetype='application/json; charset=utf-8')
# 构建用户-物品矩阵
user_item_matrix = {}
for record in download_records:
uid = record['user_id']
sid = record['post_id']
if uid not in user_item_matrix:
user_item_matrix[uid] = set()
user_item_matrix[uid].add(sid)
# 4. 计算用户相似度
similar_users = []
for other_id, other_seeds in user_item_matrix.items():
if other_id == user_id:
continue
intersection = len(user_seeds.intersection(other_seeds))
union = len(user_seeds.union(other_seeds))
if union > 0 and intersection > 0:
similarity = intersection / union
similar_users.append((other_id, similarity, other_seeds))
logger.info(f"找到 {len(similar_users)} 个相似用户")
similar_users.sort(key=lambda x: x[1], reverse=True)
similar_users = similar_users[:5]
# 5. 基于相似用户推荐帖子
candidate_seeds = {}
for similar_user, similarity, seeds in similar_users:
logger.info(f"相似用户 {similar_user}, 相似度 {similarity}")
for post_id in seeds:
if post_id not in user_seeds:
if post_id not in candidate_seeds:
candidate_seeds[post_id] = 0
candidate_seeds[post_id] += similarity
if not candidate_seeds:
logger.info(f"没有找到候选种子,返回热门推荐")
cursor.execute("""
SELECT p.id, p.title, tp.name as category, p.heat
FROM posts p
LEFT JOIN topics tp ON p.topic_id = tp.id
ORDER BY p.heat DESC
LIMIT %s
""", (top_n,))
popular_seeds = cursor.fetchall()
return Response(json.dumps({"recommendations": popular_seeds, "type": "popular"}, ensure_ascii=False), mimetype='application/json; charset=utf-8')
# 6. 获取推荐帖子的详细信息
recommended_seeds = sorted(candidate_seeds.items(), key=lambda x: x[1], reverse=True)[:top_n]
post_ids = [post_id for post_id, _ in recommended_seeds]
format_strings = ','.join(['%s'] * len(post_ids))
cursor.execute(f"""
SELECT p.id, p.title, tp.name as category, p.heat
FROM posts p
LEFT JOIN topics tp ON p.topic_id = tp.id
WHERE p.id IN ({format_strings})
""", tuple(post_ids))
result_seeds = cursor.fetchall()
seed_score_map = {post_id: score for post_id, score in recommended_seeds}
result_seeds.sort(key=lambda x: seed_score_map.get(x['id'], 0), reverse=True)
logger.info(f"返回 {len(result_seeds)} 个基于协同过滤的推荐")
return Response(json.dumps({"recommendations": result_seeds, "type": "collaborative"}, ensure_ascii=False), mimetype='application/json; charset=utf-8')
except Exception as e:
logger.error(f"推荐系统错误: {e}")
import traceback
traceback.print_exc()
return Response(json.dumps({"error": "推荐系统异常,请稍后再试", "details": str(e)}, ensure_ascii=False), mimetype='application/json; charset=utf-8')
finally:
conn.close()
@app.route('/word2vec_status', methods=['GET'])
def word2vec_status():
"""
检查Word2Vec模型状态
返回模型是否加载、词汇量等信息
"""
if not WORD2VEC_ENABLED:
return Response(json.dumps({
"enabled": False,
"message": "Word2Vec功能未启用"
}, ensure_ascii=False), mimetype='application/json; charset=utf-8')
try:
helper = get_word2vec_helper()
status = {
"enabled": WORD2VEC_ENABLED,
"initialized": helper.initialized,
"vocab_size": len(helper.model.index_to_key) if helper.model else 0,
"vector_size": helper.model.vector_size if helper.model else 0
}
# 测试几个常用词的相似词,展示模型效果
test_results = {}
test_words = ["电影", "动作", "科幻", "动漫", "游戏"]
for word in test_words:
similar_words = helper.get_similar_words(word, topn=5)
test_results[word] = similar_words
status["test_results"] = test_results
return Response(json.dumps(status, ensure_ascii=False), mimetype='application/json; charset=utf-8')
except Exception as e:
return Response(json.dumps({
"enabled": WORD2VEC_ENABLED,
"initialized": False,
"error": str(e)
}, ensure_ascii=False), mimetype='application/json; charset=utf-8')
# 添加一个临时诊断端点
@app.route('/debug_search', methods=['POST'])
def debug_search():
"""临时的调试端点,用于检查数据库中的记录"""
if request.content_type != 'application/json':
return jsonify({"error": "Content-Type must be application/json"}), 415
data = request.get_json()
keyword = data.get("keyword", "").strip()
conn = get_db_conn()
try:
with conn.cursor(pymysql.cursors.DictCursor) as cursor:
# 尝试查询包含特定词的所有记录
queries = [
("标题中包含关键词", f"SELECT seed_id, title, description, tags FROM pt_seed WHERE title LIKE '%{keyword}%' LIMIT 10"),
("描述中包含关键词", f"SELECT seed_id, title, description, tags FROM pt_seed WHERE description LIKE '%{keyword}%' LIMIT 10"),
("标签中包含关键词", f"SELECT seed_id, title, description, tags FROM pt_seed WHERE FIND_IN_SET('{keyword}', tags) LIMIT 10"),
("肖申克的救赎", "SELECT seed_id, title, description, tags FROM pt_seed WHERE title = '肖申克的救赎'")
]
results = {}
for query_name, query in queries:
cursor.execute(query)
results[query_name] = cursor.fetchall()
return Response(json.dumps(results, ensure_ascii=False), mimetype='application/json; charset=utf-8')
finally:
conn.close()
"""
接口本地测试方法(可直接运行main_online.py后用curl或Postman测试):
1. 搜索接口
curl -X POST http://127.0.0.1:5000/search -H "Content-Type: application/json" -d '{"keyword":"电影","sort_by":"downloads"}'
2. 标签推荐接口
curl -X POST http://127.0.0.1:5000/recommend_tags -H "Content-Type: application/json" -d '{"user_id":"1","tags":["动作","科幻"]}'
3. 用户兴趣标签管理(添加标签)
curl -X POST http://127.0.0.1:5000/user_tags -H "Content-Type: application/json" -d '{"user_id":"1","tags":["动作","科幻"]}'
4. 用户兴趣标签管理(查询标签)
curl "http://127.0.0.1:5000/user_tags?user_id=1"
5. 用户兴趣标签管理(删除标签)
curl -X DELETE http://127.0.0.1:5000/user_tags -H "Content-Type: application/json" -d '{"user_id":"1","tags":["动作","科幻"]}'
6. 协同过滤推荐
curl -X POST http://127.0.0.1:5000/user_based_recommend -H "Content-Type: application/json" -d '{"user_id":"user1","top_n":3}'
7. Word2Vec状态检查
curl "http://127.0.0.1:5000/word2vec_status"
8. 调试接口(临时)
curl -X POST http://127.0.0.1:5000/debug_search -H "Content-Type: application/json" -d '{"keyword":"电影"}'
所有接口均可用Postman按上述参数测试。
"""
if __name__ == "__main__":
try:
logger.info("搜索推荐服务启动中...")
app.run(host="0.0.0.0", port=5000)
except Exception as e:
logger.error(f"启动异常: {e}")
import traceback
traceback.print_exc()