blob: dbc716c76383fb4264a245cf98b683f7010ba6b6 [file] [log] [blame]
import pymysql
from typing import List, Tuple, Dict
import numpy as np
class HotRecall:
"""
热度召回算法实现
基于物品的热度(热度分数、交互次数等)进行召回
"""
def __init__(self, db_config: dict):
"""
初始化热度召回模型
Args:
db_config: 数据库配置
"""
self.db_config = db_config
self.hot_items = []
def _calculate_heat_scores(self):
"""计算物品热度分数"""
conn = pymysql.connect(**self.db_config)
try:
cursor = conn.cursor()
# 综合考虑多个热度指标
cursor.execute("""
SELECT
p.id,
p.heat,
COUNT(DISTINCT CASE WHEN b.type = 'like' THEN b.user_id END) as like_count,
COUNT(DISTINCT CASE WHEN b.type = 'favorite' THEN b.user_id END) as favorite_count,
COUNT(DISTINCT CASE WHEN b.type = 'comment' THEN b.user_id END) as comment_count,
COUNT(DISTINCT CASE WHEN b.type = 'view' THEN b.user_id END) as view_count,
COUNT(DISTINCT CASE WHEN b.type = 'share' THEN b.user_id END) as share_count,
DATEDIFF(NOW(), p.created_at) as days_since_created
FROM posts p
LEFT JOIN behaviors b ON p.id = b.post_id
WHERE p.status = 'published'
GROUP BY p.id, p.heat, p.created_at
""")
results = cursor.fetchall()
# 计算综合热度分数
items_with_scores = []
for row in results:
post_id, heat, like_count, favorite_count, comment_count, view_count, share_count, days_since_created = row
# 处理None值
heat = heat or 0
like_count = like_count or 0
favorite_count = favorite_count or 0
comment_count = comment_count or 0
view_count = view_count or 0
share_count = share_count or 0
days_since_created = days_since_created or 0
# 综合热度分数计算
# 基础热度 + 加权的用户行为 + 时间衰减
behavior_score = (
like_count * 1.0 +
favorite_count * 2.0 +
comment_count * 3.0 +
view_count * 0.1 +
share_count * 5.0
)
# 时间衰减因子(越新的内容热度越高)
time_decay = np.exp(-days_since_created / 30.0) # 30天半衰期
# 最终热度分数
final_score = (heat * 0.3 + behavior_score * 0.7) * time_decay
items_with_scores.append((post_id, final_score))
# 按热度排序
self.hot_items = sorted(items_with_scores, key=lambda x: x[1], reverse=True)
finally:
cursor.close()
conn.close()
def train(self):
"""训练热度召回模型"""
print("开始计算热度分数...")
self._calculate_heat_scores()
print(f"热度召回模型训练完成,共{len(self.hot_items)}个物品")
def recall(self, user_id: int, num_items: int = 50) -> List[Tuple[int, float]]:
"""
为用户召回热门物品
Args:
user_id: 用户ID
num_items: 召回物品数量
Returns:
List of (item_id, score) tuples
"""
# 如果尚未训练,先进行训练
if not hasattr(self, 'hot_items') or not self.hot_items:
self.train()
# 获取用户已交互的物品,避免重复推荐
conn = pymysql.connect(**self.db_config)
try:
cursor = conn.cursor()
cursor.execute("""
SELECT DISTINCT post_id
FROM behaviors
WHERE user_id = %s AND type IN ('like', 'favorite', 'comment')
""", (user_id,))
user_interacted_items = set(row[0] for row in cursor.fetchall())
finally:
cursor.close()
conn.close()
# 过滤掉用户已交互的物品
filtered_items = [
(item_id, score) for item_id, score in self.hot_items
if item_id not in user_interacted_items
]
# 如果过滤后没有足够的候选,放宽条件:只过滤强交互(like, favorite, comment)
if len(filtered_items) < num_items:
print(f"热度召回:过滤后候选不足({len(filtered_items)}),放宽过滤条件")
conn = pymysql.connect(**self.db_config)
try:
cursor = conn.cursor()
cursor.execute("""
SELECT DISTINCT post_id
FROM behaviors
WHERE user_id = %s AND type IN ('like', 'favorite', 'comment')
""", (user_id,))
strong_interacted_items = set(row[0] for row in cursor.fetchall())
finally:
cursor.close()
conn.close()
filtered_items = [
(item_id, score) for item_id, score in self.hot_items
if item_id not in strong_interacted_items
]
return filtered_items[:num_items]
def get_top_hot_items(self, num_items: int = 100) -> List[Tuple[int, float]]:
"""
获取全局热门物品(不考虑用户个性化)
Args:
num_items: 返回物品数量
Returns:
List of (item_id, score) tuples
"""
return self.hot_items[:num_items]