blob: dbc716c76383fb4264a245cf98b683f7010ba6b6 [file] [log] [blame]
Raverd7895172025-06-18 17:54:38 +08001import pymysql
2from typing import List, Tuple, Dict
3import numpy as np
4
5class HotRecall:
6 """
7 热度召回算法实现
8 基于物品的热度(热度分数、交互次数等)进行召回
9 """
10
11 def __init__(self, db_config: dict):
12 """
13 初始化热度召回模型
14
15 Args:
16 db_config: 数据库配置
17 """
18 self.db_config = db_config
19 self.hot_items = []
20
21 def _calculate_heat_scores(self):
22 """计算物品热度分数"""
23 conn = pymysql.connect(**self.db_config)
24 try:
25 cursor = conn.cursor()
26
27 # 综合考虑多个热度指标
28 cursor.execute("""
29 SELECT
30 p.id,
31 p.heat,
32 COUNT(DISTINCT CASE WHEN b.type = 'like' THEN b.user_id END) as like_count,
33 COUNT(DISTINCT CASE WHEN b.type = 'favorite' THEN b.user_id END) as favorite_count,
34 COUNT(DISTINCT CASE WHEN b.type = 'comment' THEN b.user_id END) as comment_count,
35 COUNT(DISTINCT CASE WHEN b.type = 'view' THEN b.user_id END) as view_count,
36 COUNT(DISTINCT CASE WHEN b.type = 'share' THEN b.user_id END) as share_count,
37 DATEDIFF(NOW(), p.created_at) as days_since_created
38 FROM posts p
39 LEFT JOIN behaviors b ON p.id = b.post_id
40 WHERE p.status = 'published'
41 GROUP BY p.id, p.heat, p.created_at
42 """)
43
44 results = cursor.fetchall()
45
46 # 计算综合热度分数
47 items_with_scores = []
48 for row in results:
49 post_id, heat, like_count, favorite_count, comment_count, view_count, share_count, days_since_created = row
50
51 # 处理None值
52 heat = heat or 0
53 like_count = like_count or 0
54 favorite_count = favorite_count or 0
55 comment_count = comment_count or 0
56 view_count = view_count or 0
57 share_count = share_count or 0
58 days_since_created = days_since_created or 0
59
60 # 综合热度分数计算
61 # 基础热度 + 加权的用户行为 + 时间衰减
62 behavior_score = (
63 like_count * 1.0 +
64 favorite_count * 2.0 +
65 comment_count * 3.0 +
66 view_count * 0.1 +
67 share_count * 5.0
68 )
69
70 # 时间衰减因子(越新的内容热度越高)
71 time_decay = np.exp(-days_since_created / 30.0) # 30天半衰期
72
73 # 最终热度分数
74 final_score = (heat * 0.3 + behavior_score * 0.7) * time_decay
75
76 items_with_scores.append((post_id, final_score))
77
78 # 按热度排序
79 self.hot_items = sorted(items_with_scores, key=lambda x: x[1], reverse=True)
80
81 finally:
82 cursor.close()
83 conn.close()
84
85 def train(self):
86 """训练热度召回模型"""
87 print("开始计算热度分数...")
88 self._calculate_heat_scores()
89 print(f"热度召回模型训练完成,共{len(self.hot_items)}个物品")
90
91 def recall(self, user_id: int, num_items: int = 50) -> List[Tuple[int, float]]:
92 """
93 为用户召回热门物品
94
95 Args:
96 user_id: 用户ID
97 num_items: 召回物品数量
98
99 Returns:
100 List of (item_id, score) tuples
101 """
102 # 如果尚未训练,先进行训练
103 if not hasattr(self, 'hot_items') or not self.hot_items:
104 self.train()
105
106 # 获取用户已交互的物品,避免重复推荐
107 conn = pymysql.connect(**self.db_config)
108 try:
109 cursor = conn.cursor()
110 cursor.execute("""
111 SELECT DISTINCT post_id
112 FROM behaviors
113 WHERE user_id = %s AND type IN ('like', 'favorite', 'comment')
114 """, (user_id,))
115
116 user_interacted_items = set(row[0] for row in cursor.fetchall())
117
118 finally:
119 cursor.close()
120 conn.close()
121
122 # 过滤掉用户已交互的物品
123 filtered_items = [
124 (item_id, score) for item_id, score in self.hot_items
125 if item_id not in user_interacted_items
126 ]
127
128 # 如果过滤后没有足够的候选,放宽条件:只过滤强交互(like, favorite, comment)
129 if len(filtered_items) < num_items:
130 print(f"热度召回:过滤后候选不足({len(filtered_items)}),放宽过滤条件")
131 conn = pymysql.connect(**self.db_config)
132 try:
133 cursor = conn.cursor()
134 cursor.execute("""
135 SELECT DISTINCT post_id
136 FROM behaviors
137 WHERE user_id = %s AND type IN ('like', 'favorite', 'comment')
138 """, (user_id,))
139
140 strong_interacted_items = set(row[0] for row in cursor.fetchall())
141
142 finally:
143 cursor.close()
144 conn.close()
145
146 filtered_items = [
147 (item_id, score) for item_id, score in self.hot_items
148 if item_id not in strong_interacted_items
149 ]
150
151 return filtered_items[:num_items]
152
153 def get_top_hot_items(self, num_items: int = 100) -> List[Tuple[int, float]]:
154 """
155 获取全局热门物品(不考虑用户个性化)
156
157 Args:
158 num_items: 返回物品数量
159
160 Returns:
161 List of (item_id, score) tuples
162 """
163 return self.hot_items[:num_items]