22301110 | f2e3c09 | 2025-06-05 01:24:43 +0800 | [diff] [blame^] | 1 | import os |
| 2 | import time |
| 3 | import jieba |
| 4 | import fasttext |
| 5 | import pandas as pd |
| 6 | from flask import Flask, request, jsonify |
| 7 | from sqlalchemy import create_engine |
| 8 | from scipy.sparse import coo_matrix |
| 9 | from sklearn.metrics.pairwise import cosine_similarity |
| 10 | import pickle |
| 11 | |
| 12 | app = Flask(__name__) |
| 13 | |
| 14 | # === ✅ SQLAlchemy 数据库连接 === |
| 15 | engine = create_engine("mysql+pymysql://sy:sy_password@49.233.215.144:3306/pt_station") |
| 16 | |
| 17 | # === ✅ 加载 fastText 模型 === |
| 18 | fasttext_model_path = 'E:\\course\\pt\\recommend\\models\\cc.zh.300.bin' |
| 19 | if not os.path.exists(fasttext_model_path): |
| 20 | raise FileNotFoundError("fastText 模型文件不存在,请检查路径。") |
| 21 | print("加载 fastText 模型中...") |
| 22 | ft_model = fasttext.load_model(fasttext_model_path) |
| 23 | print("模型加载完成 ✅") |
| 24 | |
| 25 | # === ✅ 用户标签行为矩阵构建 === |
| 26 | def get_user_tag_matrix(): |
| 27 | df = pd.read_sql("SELECT user_id, tag, score FROM user_tag_scores", engine) |
| 28 | print(df) |
| 29 | df['user_id'] = df['user_id'].astype(str) |
| 30 | user_map = {u: i for i, u in enumerate(df['user_id'].unique())} |
| 31 | tag_map = {t: i for i, t in enumerate(df['tag'].unique())} |
| 32 | df['user_index'] = df['user_id'].map(user_map) |
| 33 | df['tag_index'] = df['tag'].map(tag_map) |
| 34 | matrix = df.pivot_table(index='user_id', columns='tag', values='score', fill_value=0) |
| 35 | sparse_matrix = coo_matrix((df['score'], (df['tag_index'], df['user_index']))) |
| 36 | return df, matrix, sparse_matrix, user_map, tag_map |
| 37 | |
| 38 | # === ✅ 基于 fastText 的语义相似推荐方法 === |
| 39 | def semantic_recommend(user_id, topn=5): |
| 40 | print(f"正在为用户 {user_id} 生成推荐...") |
| 41 | |
| 42 | # 读取数据库中的用户标签数据 |
| 43 | df = pd.read_sql("SELECT user_id, tag, score FROM user_tag_scores", engine) |
| 44 | print(f"总记录数: {len(df)}") |
| 45 | print(f"数据示例:\n{df.head()}") |
| 46 | print(df.dtypes) |
| 47 | user_id = str(user_id) # 确保匹配 |
| 48 | |
| 49 | # 获取该用户的所有标签(按分数从高到低排序) |
| 50 | user_tags = df[df['user_id'] == user_id].sort_values(by="score", ascending=False)['tag'].tolist() |
| 51 | print(f"用户 {user_id} 的标签(按分数排序): {user_tags}") |
| 52 | |
| 53 | if not user_tags: |
| 54 | print(f"用户 {user_id} 没有标签记录,返回空推荐结果。") |
| 55 | return [] |
| 56 | |
| 57 | # 截取前 3 个标签作为“兴趣标签” |
| 58 | user_tags = user_tags[:3] |
| 59 | print(f"用户 {user_id} 的 Top 3 标签: {user_tags}") |
| 60 | |
| 61 | # 构造所有标签的词向量 |
| 62 | all_tags = df['tag'].unique() |
| 63 | print(f"所有唯一标签数量: {len(all_tags)}") |
| 64 | |
| 65 | tag_vectors = {} |
| 66 | for tag in all_tags: |
| 67 | vec = ft_model.get_word_vector(tag) |
| 68 | tag_vectors[tag] = vec |
| 69 | |
| 70 | # 计算未出现过标签的相似度得分 |
| 71 | scores = {} |
| 72 | for tag in all_tags: |
| 73 | if tag in user_tags: |
| 74 | continue |
| 75 | vec = tag_vectors[tag] |
| 76 | sim_total = 0.0 |
| 77 | for t in user_tags: |
| 78 | sim = cosine_similarity([vec], [ft_model.get_word_vector(t)])[0][0] |
| 79 | print(f"标签 [{tag}] 与用户标签 [{t}] 的相似度: {sim:.4f}") |
| 80 | sim_total += sim |
| 81 | avg_score = sim_total / len(user_tags) |
| 82 | scores[tag] = avg_score |
| 83 | print(f"标签 [{tag}] 的平均相似度得分: {avg_score:.4f}") |
| 84 | |
| 85 | # 排序并返回 topN 标签 |
| 86 | sorted_tags = sorted(scores.items(), key=lambda x: x[1], reverse=True)[:topn] |
| 87 | print(f"\n最终推荐标签(前 {topn}):") |
| 88 | for tag, score in sorted_tags: |
| 89 | print(f"{tag}: {score:.4f}") |
| 90 | |
| 91 | return [tag for tag, _ in sorted_tags] |
| 92 | |
| 93 | # === ✅ ItemCF 推荐方法 === |
| 94 | import os |
| 95 | import pickle |
| 96 | |
| 97 | def itemcf_recommend(user_id, matrix, sim_path="./models/itemcf_sim.pkl", topn=5): |
| 98 | user_id = str(user_id) # 确保 user_id 类型一致 |
| 99 | print(matrix.index.dtype) |
| 100 | print(type(user_id)) # 应该是 str |
| 101 | |
| 102 | if user_id not in matrix.index: |
| 103 | print(f"⚠️ 用户 {user_id} 不在评分矩阵中。") |
| 104 | return [] |
| 105 | |
| 106 | if not os.path.exists(sim_path): |
| 107 | print(f"⚠️ 用户 {user_id} 不在评分矩阵中。") |
| 108 | train_and_save_itemcf() |
| 109 | |
| 110 | with open(sim_path, "rb") as f: |
| 111 | sim_df = pickle.load(f) |
| 112 | |
| 113 | user_row = matrix.loc[user_id] |
| 114 | user_tags = user_row[user_row > 0] |
| 115 | |
| 116 | if user_tags.empty: |
| 117 | print(f"⚠️ 用户 {user_id} 没有任何标签评分记录。") |
| 118 | return [] |
| 119 | |
| 120 | print(f"用户 {user_id} 的标签评分:\n{user_tags}") |
| 121 | |
| 122 | scores = {} |
| 123 | for tag, val in user_tags.items(): |
| 124 | if tag not in sim_df: |
| 125 | print(f"标签 {tag} 在相似度矩阵中不存在,跳过。") |
| 126 | continue |
| 127 | sims = sim_df[tag].drop(index=user_tags.index, errors="ignore") |
| 128 | for sim_tag, sim_score in sims.items(): |
| 129 | scores[sim_tag] = scores.get(sim_tag, 0) + sim_score * val |
| 130 | |
| 131 | if not scores: |
| 132 | print(f"⚠️ 用户 {user_id} 无法生成推荐,可能是标签相似度不足。") |
| 133 | return [] |
| 134 | |
| 135 | sorted_tags = sorted(scores.items(), key=lambda x: x[1], reverse=True) |
| 136 | print(f"推荐得分(前{topn}):\n", sorted_tags[:topn]) |
| 137 | |
| 138 | return [tag for tag, _ in sorted_tags[:topn]] |
| 139 | |
| 140 | |
| 141 | # === ✅ ItemCF 相似度训练 === |
| 142 | def train_and_save_itemcf(path="./models/itemcf_sim.pkl"): |
| 143 | _, matrix, _, _, _ = get_user_tag_matrix() |
| 144 | tag_sim = cosine_similarity(matrix.T) |
| 145 | sim_df = pd.DataFrame(tag_sim, index=matrix.columns, columns=matrix.columns) |
| 146 | with open(path, "wb") as f: |
| 147 | pickle.dump(sim_df, f) |
| 148 | print("ItemCF 相似度矩阵已保存 ✅") |
| 149 | |
| 150 | # === ✅ Flask 推荐接口 === |
| 151 | import random |
| 152 | |
| 153 | @app.route("/recommend_torrents", methods=["POST"]) |
| 154 | def recommend_torrents(): |
| 155 | data = request.get_json() |
| 156 | user_id = data.get("user_id") |
| 157 | |
| 158 | if not user_id: |
| 159 | return jsonify({"error": "缺少 user_id"}), 400 |
| 160 | |
| 161 | df, matrix, _, _, _ = get_user_tag_matrix() |
| 162 | |
| 163 | # 获取推荐标签 |
| 164 | itemcf_result = itemcf_recommend(user_id, matrix) |
| 165 | semantic_result = semantic_recommend(user_id) |
| 166 | |
| 167 | |
| 168 | print(f"ItemCF 推荐标签: {itemcf_result}") |
| 169 | print(f"Semantic 推荐标签: {semantic_result}") |
| 170 | |
| 171 | all_tags = df['tag'].unique().tolist() |
| 172 | |
| 173 | # 存储标签及其推荐得分 |
| 174 | combined = [] |
| 175 | used_tags = set() |
| 176 | |
| 177 | def add_unique_tags(tags, method_name): |
| 178 | for tag in tags: |
| 179 | if tag not in used_tags: |
| 180 | random_priority = random.uniform(0, 1) |
| 181 | if method_name == 'ItemCF': |
| 182 | combined.append((tag, 'ItemCF', random_priority)) |
| 183 | elif method_name == 'Semantic': |
| 184 | combined.append((tag, 'Semantic', random_priority)) |
| 185 | used_tags.add(tag) |
| 186 | |
| 187 | # 添加 ItemCF 和 Semantic 推荐 |
| 188 | add_unique_tags(itemcf_result, 'ItemCF') |
| 189 | add_unique_tags(semantic_result, 'Semantic') |
| 190 | |
| 191 | # 添加随机标签 |
| 192 | random.shuffle(all_tags) |
| 193 | add_unique_tags(all_tags, 'Random') |
| 194 | |
| 195 | # 排序:按推荐得分排序,加入的随机值也会影响排序 |
| 196 | combined.sort(key=lambda x: x[2], reverse=True) |
| 197 | |
| 198 | # 根据标签获取种子 ID |
| 199 | final_tags = [tag for tag, _, _ in combined] |
| 200 | print(f"最终推荐标签: {final_tags}") |
| 201 | torrent_ids = get_torrent_ids_by_tags(final_tags) |
| 202 | |
| 203 | return jsonify({"torrent_ids": torrent_ids}) |
| 204 | |
| 205 | |
| 206 | |
| 207 | from sqlalchemy.sql import text |
| 208 | |
| 209 | import random |
| 210 | from sqlalchemy import text |
| 211 | |
| 212 | def get_torrent_ids_by_tags(tags, limit_per_tag=10): |
| 213 | if not tags: |
| 214 | tags = [] |
| 215 | |
| 216 | recommended_ids = set() |
| 217 | with engine.connect() as conn: |
| 218 | for tag in tags: |
| 219 | query = text(""" |
| 220 | SELECT torrent_id |
| 221 | FROM bt_torrent_tags |
| 222 | WHERE tag = :tag |
| 223 | LIMIT :limit |
| 224 | """) |
| 225 | result = conn.execute(query, {"tag": tag, "limit": limit_per_tag}) |
| 226 | for row in result: |
| 227 | recommended_ids.add(row[0]) |
| 228 | |
| 229 | # 获取数据库中所有 torrent_id |
| 230 | all_query = text("SELECT DISTINCT torrent_id FROM bt_torrent_tags") |
| 231 | all_result = conn.execute(all_query) |
| 232 | all_ids = set(row[0] for row in all_result) |
| 233 | |
| 234 | # 剩下的(非推荐)种子 ID |
| 235 | remaining_ids = all_ids - recommended_ids |
| 236 | |
| 237 | # 随机打乱推荐和剩下的 ID |
| 238 | recommended_list = list(recommended_ids) |
| 239 | remaining_list = list(remaining_ids) |
| 240 | random.shuffle(recommended_list) |
| 241 | random.shuffle(remaining_list) |
| 242 | |
| 243 | return recommended_list + remaining_list |
| 244 | |
| 245 | |
| 246 | # === ✅ 启动服务 === |
| 247 | if __name__ == '__main__': |
| 248 | train_and_save_itemcf() |
| 249 | from waitress import serve |
| 250 | serve(app, host="0.0.0.0", port=5000, threads=16) |